SRP EVAP

ME 476C Spring 2025

Samantha Synk – Project Manager Lilliana Hadik-Barkoczy-Logistics Manager Garet Bowels-Manufacturing Engineer Trey Bushling-CAD Engineer Jorge Cesin-Financial Manager Brendan Steele-Test Engineer

NAU NORTHERN ARIZONA UNIVERSITY

Project Description

- Objective: Research water evaporation and implement an experimental apparatus to mimic SRP's goal of installing solar panels over canals
- Sponsored by Dr. Tom Acker, Sr. Principal Engineer, Innovation and Development at Salt River Project.
- Corporate Goal of SRP: Reduce SRP's carbon emissions by 82% by 2035, net zero by 2050.
- Interested in renewable energy sources that utilize pre-existing space and provide co-benefits

Picture Credit: Tectonicus

Importance

- Because of extended drought conditions across the state, water conservation is issue of importance for SRP
- Adding solar panels above canals is more expensive than regular ground mounting
- Our study aims to answer the question: Is the co-benefit of water evaporation reduction significant enough for future projects to be worth it?
- Our data will be provided to ASU research team to assist them in their analysis

U.S. Drought Monitor Arizona

Credit: Arizona Department of Water Resources [1]

Black Box Model

To differentiate between the types of flows, arrows are categorized as follows: materials are shown with thick black lines, energy is shown with thin black lines, and signals are shown with dashed lines.

Figure 1: Black Box Model

Samantha Synk, 3/3/2025, SRP EVAP

NORTHERN ARIZONA UNIVERSITY

Functional Model

NORTHERN ARIZONA UNIVERSITY

Samantha Synk, 3/3/2025, SRP EVAP

Concept Generation - Morphological Matrix

Concept	Option 1	Option 2	Option 3	Option 4
Humidity	Hydrometer	Hygrometer*	Gravimetric Humidity Sensor	Psychrometer
Scientific methods of recording the humidity within the test apparatus at multiple locations.	Cole-Parmer	Fine Tools	Upper electrode train-the substrate Cover settoride Gass substrate Livington Janico IABE	Fine Art America
Temperature	Thermocouple*	Electric Thermometer	Analog Thermometer	
Methods of recording the temperature at multiple locations such as in the water above the water and the general apparatus.	RAM-Sensors	SP-Bell Art	General Tools	
Wind	Digital Anemometer*	Robinson Anemometer		
Scientific methods of recording the wind speed directly over the surface of the water reservior.	WinTact	METEO OMINIUM		

NORTHERN ARIZONA UNIVERSITY

Brendan Steele, 3/3/2025, SRP EVAP

Concept Generation - Design Concepts

Design 1 holes for air to go through

Design 3

Figure 3: Design 1

Figure 4 : Design 2

Figure 5: Design 3

NORTHERN ARIZONA UNIVERSITY

Brendan Steele, 3/3/2025, SRP EVAP

Concept Evaluation - Pugh Chart

	PUGH Chart - SRP Evaporation				
		Concept			
		1	2	3	
	Cost	-	+	-	
	Power	+	0	0	
Criteria	Mobility	+	-	-	
	Aparatus Seal	+	-	0	
	Size Smaller= better	+	0	-	
	Temp Higher=better	+	+	-	
	Accesible	-	-	+	
	Monitorability	+	-	+	
	Sum of + 6 2 2				
Sum of 0		0	2	2	
Sum of -		2	4	4	
Total		4	-2	-2	

Design 3

NORTHERN ARIZONA UNIVERSITY

Brendan Steele, 3/3/2025, SRP EVAP

Concept Evaluation – Design Apparatus

Benchmarking:
No Benchmarking Apparatus
Pros:
Measurement Precision
Portable
Compactable
Cons:
High cost
Anticipating Malfunctions

Garet Bowles, 3/3/2025, SRP EVAP

Figure 6: Design 1

General Project Assumptions

These are the base parameters that we will be designing our experiment around:

(In Summer) (U.S. Customary Units)

Temperature of Air: 100°F, Temperature of Water(Body): 75°F, Temperature of water(surface):78°F

Relative Humidity: 24%

Wind Speed: 5.8mph

Top Width: 80ft, Bottom Width: 24ft

Water Level: 16.5ft, Height of canal: 20ft

Height of Roof from Top of canal: 10ft, width: 82ft

Still Water, No Clouds

□ No Water Seepage

Picture credit: [4]

Trey Bushling, 3/3/2025, SRP EVAP

Calculations

To ensure that our apparatus has geometric similarity with the canal, a scale of 1' = 40' is applied to dimensions of the canal. We plan to make our water container $2' \times 2'$.

Dimensions of the canal:	Dimensions of our apparatus:	
$w_{top} = 80 ft$	$w_{top} = 24 in$	<u>Heights of the covers over the water surface will be:</u>
$w_{bottom} = 24 ft$	w _{@ water} = 21.1 in	$\frac{80ft}{3ft} = \frac{2ft}{h_{cover}} \Rightarrow h_{cover} = 0.9in$
$w_{@water} = 70.2 ft$	$l_{wall} = 10.3 in$	$\frac{80ft}{2} - \frac{2ft}{2} \rightarrow h = -3in$
$l_{wall} = 34.4 ft$	$\frac{80ft}{24ft} = \frac{2ft}{w_{bottom}} \Rightarrow w_{bottom} = 7.2 in$	$10ft - h_{cover} \rightarrow h_{cover} - 5th$
$h_{canal} = 20 ft$	$\frac{80ft}{20ft} = \frac{2ft}{h_{canal}} \Rightarrow h_{canal} = 6 in$	$\frac{80ft}{15ft} = \frac{2ft}{h_{cover}} \Rightarrow h_{cover} = 4.5in$
$h_{water} = 16.5 ft$	$\frac{80ft}{16.5ft} = \frac{2ft}{h_{water}} \Rightarrow h_{water} = 4.95 in$	

NORTHERN ARIZONA UNIVERSITY

Lilliana Hadik-Barkoczy, 3/3/2025, SRP EVAP

Calculations

Drawings made in SolidWorks to test the geometric similarity from calculations. Geometric similarity will ensure that the data collected from our apparatus can be directly applied to life size situations.

Drawing 1: dimensions of canal in feet

Drawing 2: dimensions of canal model in inches

Lilliana Hadik-Barkoczy, 3/3/2025, SRP EVAP

NORTHERN ARIZONA UNIVERSITY

CAD Model

- Sealed
- Measuring Devices
- Sun (UV light system)
- Wind (Fan)
- Canal
- Ventilation
- 4x4ft area top and bottom
- 4x6.5ft area on walls
- Canal width top 2ft, bottom width .6ft, length 2ft

Figure 7: CAD Model

NORTHERN ARIZONA UNIVERSITY

Bill of Materials

Bill of Materials:

For the teams bill of materials, a list of materials needed to test for the main experiment has been listed out with the estimated price.

Due to the clients request of not creating a prototype and giving the team a goal of only testing for evaporation, all materials purchased will be for experimental purposes.

Bill of Materials

Component	Unit Quantity	Description	Unit Cost
		Tent in order to control variables like	
		humidity and evaporation	
Climate Tent	1		\$200 - \$700
		Full Spectrum Bulb to simulate	
Full Spectrum Bulb	6	evaporation from the sun	\$10 - \$40
		Humididty reader to accuratly read the	
		humidity in the green house. This will be	
		used to create a constant humidity	
Humididty Reader	3	before each test.	\$5 - \$80
		Temperature Sensor to read	
		temperature at the top of the tent and	
Temperature Sensor	6	right above the water.	\$20 - \$150
		Water tank to hold water. 2 units just	
Water Tank	2	incase the primary one breaks.	\$10 - \$100
		Heater to properly set the temperature	
Heater	1	inside the tent.	\$50 - \$100
Fan	2	Fan to simulate wind.	\$20 - \$200
Wind Sensor	2	Wind Sensor to test for wind variables.	\$25 - \$300

Project Budget

Overall Budget:

Our overall budget is \$5,000, with the majority of the budget going to testing and experimentation. A portion of the budget will go towards traveling to the ASU campus to see the prototype

Q gofundme =

Fundraising:

As a team, we set up a go fund me that has so far raised \$765, with a goal of \$500.

	e at e 8 e 1 f	- ocorip		. o tat			
SRP Comp. Funding	Funds	\$5,000 to use on evaporation research		\$5,000	Gas	^	<mark>/\$60 (Round Trip</mark>
		A minimum of 10% of the total fund			Hotel	Ν	V/A / Undecided
undrasing	Funds	needs to	needs to be fundraised by the group		Food	^	[,] \$150 (\$25 Each
			Estimated Total:		Tot		otal: ~\$210
Item	Category		Description	Unit Cost	-	Quantity	Costs
			Tent in order to control variables				
Climate Tent	Tests/Exp	eriments	like humidity and evaporation	\$200 - \$700			1 \$200 - \$700
			IV Jamp to simulate evaporation				
LIV Lamp	Tosts/Evn	orimonts	from the sun	\$10-\$40			6 \$60 - \$240
ov Lamp	Tests/LAp	ennents	nom the sun	ψ10-ψ40			0 000 - 0240
			Humididty reader to accuratly read				
			the humidity in the green house.				
			This will be used to create a				
Humidity Reader	Tests/Exp	eriments	constant humidity before each test.	. \$5 - \$80			3 \$15 - \$240
			Temperature Sensor to read				
			temperature at the top of the tent				
Temperature Sensor	Tests/Exp	eriments	and right above the water.	\$20 - \$150)		6 \$120 - \$900
			Water tank to hold water. 2 units				
Water Tank	Tests/Exp	eriments	just incase the primary one breaks.	\$10 - \$10)		2 \$20 - \$200
			Heater to properly set the				
Heater	Tests/Exp	eriments	temperature inside the tent.	\$50 - \$10)		1 \$50 - \$100
Fan	Tests/Exp	eriments	Fan to simulate wind	\$20 - \$20)		2 \$40 - \$400
			Wind Sensor to test for wind				
Wind Sensor	Tests/Exp	eriments	variables.	\$25 - \$30)		2 \$50 - \$600
						~Total Cos	t: \$555 - \$3,380

Trip to ASU Campus in Tempe

Support NAU SRP Evaporation Capstone Project

\$765 raised \$500 goal · 7 donations

Jorge Cesin, 3/3/2025, SRP EVAP

ME 476C SRP GANTT CHART

Conclusion

Future Work

- Heat and Mass Transfer analysis
- Non-dimensionless equations
- Decided final design
- Mathematical models to show how combined factors effect evaporation
- High-quality labeled drawing in Solidworks
- Have physical hand out of parts

Picture credit: [4]

Thank You!

Refrences

[1] "Drought Status | Arizona Department of Water Resources," Azwater.gov, 2024. https://www.azwater.gov/drought/drought-status

[2] "Fundamentals of heat and mass transfer, 8th edition," Wiley.com, <u>https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer,+8th+Edition-p-9781119353881</u> (accessed Feb. 8, 2025).

[3] Fundamentals of Engineering Thermodynamics: Moran, Michael J., Shapiro, Howard N., Boettner, Daisie D., Bailey, Margaret B.: 9781118412930: Amazon.com: Books, <u>https://www.amazon.com/Fundamentals-Engineering-Thermodynamics-Michael-Moran/dp/1118412931</u> (accessed Feb. 9, 2025).

- [4] B. McKuin *et al.*, "Energy and water co-benefits from covering canals with solar panels," *Nature Sustainability*, Mar. 2021, doi: <u>https://doi.org/10.1038/s41893-021-00693-8</u>.
- [5] W. Wang et al., "Estimating evaporation from irrigation canals in the midstream areas of the Heihe River basin by a double-deck surface air layer (DSAL) model," MDPI, <u>https://www.mdpi.com/2073-4441/11/9/1788#B18-water-11-01788</u> (accessed Mar. 2, 2025).