
Humanoid Hand

Noah Enlow, Tyler LeBeau, Joseph Maresh, David Lutz, Markus Steinebrunner, Justin Alonzo

Project Description

A robotic hand that matches the capabilities of the human hand

<u>Sponsored by</u>: Dr. Zach Lerner Dr. Reza Razavian

Background and Benchmarking

Shadow Hand:

- Highly accurate, hall effect sensors in every joint
- 24 DoF
- 20 motors
- Tactile Sensing

DexHand:

- Open-source, lots of documentation
- Low cost
- Teleoperation

Tesla Optimus:

- 22 Dof
- 6 Motors
- Underactuated
- Tactile sensing

[2]

Noah Humanoid Hand 2/10/25 3

Customer and Engineering Requirements

Customer Requirements

- Be as close as possible to human hand
- Average size and weight of human hand
- Have the average force capacity of an adult
- High repeatability in joints
- Within reasonable budget
- Basic and functional UI

Engineering requirements

- Grip force 25-40kg
- Time from open to closed hand 150-300ms
- Apx Size of human hand
- Entire contraption weighs 2.5-3kg
- Cost of manufacturing<\$1500
- Approximately 20 DOF
- Can be operated by clients with less than a 10 min demo
- Each joint can be actuated 10,000 times

Quality Function Deployment

		Technical Requirements								Customer Opinion Survey					
Customer Needs	Customer Weights(1-5)	Grip Force between 240-390N	Time from full extenstion to full dosure is 150-300ms	Approximate size of human hand	Ap x 2.5-3kg	Cost of manufacturing≺\$1500	apx 20 DOF	Can be opperated by Lemer or Reza with a ⊲10min den	Each joint ensured up to 10k motions		1 Poor	C,	3 Acceptable	4	5 Excellent
Strength	5	9	3	3	3	9	9	3	9			В		Ċ	A
Speed	4	3	9	3	1	9	9	3	9				С	B	A
Accurate dimensions	3	3	3	9	9	3	9	3	9				Α	С	В
Accurate weight	2	9	9	9	9	3	3	3	3			Α	С		В
Budget	4	9	3	3	9	9	3	9	9		А		С		В
Many degrees of freedom	4	3	3	3	3	3	9	9	9		С			В	A
Uses stand for of power to function	5	1	1	9	9	9	1	9	3						ABC
Has basic and functional ui	4	1	1	1	3	3	3	9	1		С			В	A
Technical Requirement Units			w	ø	kg	÷	deg	ц Ц	*				Legend:		
Techni	ical Requirement Targets	390	0.3		8	150	20	0	1 OK			A		Shadow Ha	nd
Absolu	ute Technical Importance	4	÷	145	69	201	262	951	2051		B Dex Hand				
Relati	E N		9	5	8	4	е С	-			С		Optimus Ha	nd	

Justin's Literature Review

Books:

- Fundamentals of C++ programming [28]
- Programming Fundamentals A Modular Structured Approach using C++ [27]

Journal articles :

- Integrated linkage-driven dexterous anthropomorphic robotic hand [9]
- Design of a Highly Biomimetic Anthropomorphic Robotic Hand towards Artificial Limb Regeneratior [12]
- Finger Kinematics during Human Hand Grip and Release PMC [10]
- Design of Tendon-Driven Robotic Fingers: Modeling and Control Issues.[8]

Websites:

- Advanced Humanoid Robotic Hand Technologies | T2 Porta [7]
- Servos Explained [11]

Noah's Literature Review

Books:

- "Practical Robotics in C++" [17]
- "The C++ Programming Language" [18]

Journal Articles:

- "A review of Robot Learning for Manipulation" [19]
- "On Dexterity and Dexterous Manipulation" [20]
- "Postural Hand Synergies for Tool Use" [21]

Websites:

- "robotnanohand.com" [22]
- Github repository for C++ functions useful for robotics programming [23]

Tyler's Literature Review

Books:

- Kinematic modelling of the human hand for robotics [29]
- Human Hand Function [30]

Journal Articles:

- Functional Anatomy and Biomechanical Concepts in the Hand [31]
- Biomechanics of the Human Hand [32]
- Biomechanical Characteristics of Hand Coordination in Grasping Activities of Daily Living [34]

Websites:

• Biomechanics of the Hand [33]

Literature covers the individual and complex movement of the human hand, how the hand moves and grips items.

David's Literature Review

Books:

Robot Arm Kinematics[25]

Simply Grasping Simple Shapes[26]

Journal Articles:

Design and control of robotic hands[13]

Mechanical design of a biologically inspired prosthetic hand, The Touch hand 3 [14]

Put-hand-hybrid industrial and Biomimetic Gripper for Elastic Object Manipulation [15]

All are different hand/ finger design

Performance optimizing of pneumatic soft robotic hands using wave-shaped contour actuator [16]

- Pneumatic finger design
- All silicon/rubber material

Websites:

National Robotics Educational Foundation (the-nref.com)

Joseph's Literature Review

Books:

- Arduino Robotics [37]
- Theory of Applied Robotics: Kinematics, Dynamics, and Control (3rd Edition) [38]
- Modern Robotics: Mechanics, Planning, and Control [39]

Journal Articles:

- Robust Feedback Control Design of Underactuated Robotic Hands with Selectively Lockable Switches for Amputees [40]
- Modern C++ as a Modeling Language for Automated Driving and Human-Robot Collaboration [41]

Websites:

- Packt Publishing: Hands On Robotics Programming with Cpp [42]
- Raspberry Pi Settings for Robotics [43]

Markus' Literature Review

Books:

- InformedHealth.org. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: How do hands work? [Updated 2021 May 20] https://www.ncbi.nlm.nih.gov/books/NBK279362/[44]
- P. W. Brand and A. Hollister, Clinical Mechanics of the Hand. St. Louis: Mosby Year Book, 1993. [45]

Journal Articles:

- E. Nazma and S. Mohd, "TENDON DRIVEN ROBOTIC HANDS: A REVIEW," International Journal of Mechanical Engineering and robotics research. doi:10.18178/ijmerr [46]
- Zhe Xu and E. Todorov, "Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration," 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3485–3492, May 2016. doi:10.1109/icra.2016.7487528 [47]
- Zhe Xu, V. Kumar, and E. Todorov, "A low-cost and modular, 20-DOF anthropomorphic robotic hand: Design, actuation and modeling," 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 368–375, Oct. 2013. doi:10.1109/humanoids.2013.7030001 [48]

Websites:

 "Bionicsofthand," BionicSoftHand | Festo USA, https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlightsfrom-2015-to-2017/bionicsofthand-id_68106/ (accessed Feb. 9, 2025).[49]

Mathematical Modeling

Mathematical Modelling: Power Analysis

Need: Adaptable method to calculate power consumption

Solution: Python script

Max Power Draw:

~107 Watts

```
def __init__(self, motors, control_circuits):
      self.motors = motors
      self.control circuits = control circuits
      # Sum power consumption of all motors:
      motor_power = sum(motor.power_consumption() for motor in self.motors)
      # Sum power consumption of control circuit components:
      circuit_power = sum(control_circuit.power_consumption() for control_circuit in self.control_circuits)
      # Total power consumption:
      return motor_power + circuit_power
robotic_hand = RoboticHand(
   motors=[index_motor1, index_motor2, middle_motor1, middle_motor2, ring_motor1,
         ring_motor2, pinky_motor1, pinky_motor2, thumb_motor1, thumb_motor2,
         thumb_motor31.
   control_circuits=[raspberry_pi, arduino_nano]
# Calculate total power consumption:
total_power = robotic_hand.total_power_consumption(is_active=False)
```

Mathematical Modelling: Power Analysis (Cont.)

Structure:

Classes for each type of component (motor, microcontroller, etc.)

- > Those classes have attributes such as operating voltage and current draw.
- Objects representing each particular component inherit those classes.
- Objects take on values unique to the thing they represent (this motor draws this much current).
- A class representing the whole hand takes all of those objects in as arguments and calculates the total power consumption.

Mathematical Modeling: Projectile Motion and Reaction Speed

To calculate the reaction speed of the robotic hand, projectile motion equations can be used:

$$x_{f} = x_{0} + v_{0x}t \qquad (eq 1)$$

$$x_{f} = \frac{v_{0}^{2}sin2\theta}{g} \qquad (eq 2)$$

These equations can be used to solve for the flight time of an object at certain conditions assuming level ground, ideal launch angle, and ideal horizontal distance.

Mathematical Modeling: Projectile Motion and Reaction Speed Cont.

Using equation 2, and assuming ideal conditions of a launch angle of 30 degrees and a horizontal distance of 1.5 meters, equation 2 becomes:

$$1.5m = \frac{v_0^2(2\sin 30\cos 30)}{9.81m/s^2}$$

Initial velocity is solved to be 4.122 meters per second. Plugging this value into equation 1:

$$1.5m = 0 + [(4.122m/s)cos30]t$$

Solving for t yields a time of .42 seconds, which means the code will need to run at .42 cycles per second, or .42 hertz, to have enough reaction time.

Mathematical Modeling: Forces In fingers

The average grip force of a person is 80 lbs and that is the maximum force that will be applied distributed based on average percent weight distribution.

Thumb force $F_{\rm thumb} = 0.25 \times 355.8 \,{\rm N} = 88.95 \,{\rm N}$ Index force $F_{\rm index} = 0.30 \times 355.8 \,{\rm N} = 106.74 \,{\rm N}$ Middle force $F_{\rm middle} = 0.15 \times 355.8 \,{\rm N} = 53.37 \,{\rm N}$ Ring force $F_{\rm ring} = 0.15 \times 355.8 \,{\rm N} = 53.37 \,{\rm N}$ Pinky force $F_{\rm pinky} = 0.10 \times 355.8 \,{\rm N} = 35.58 \,{\rm N}$

Torques on the fingers assuming 1 cm distance from joints and same length of all fingers(except thumb)

A. Thumb:	
$\tau_{\rm thumb,\ joint\ 1} = 88.95 \cdot 0.05 = 4.45 \mathrm{N} \cdot \mathrm{m}, \tau_{\rm thumb,\ joint\ 2} = 88.95 \cdot 0.03 = 2.67 \mathrm{N} \cdot \mathrm{m}, \tau_{\rm thumb,\ joint\ 3} = 88.95 \cdot 0.015 = 1.33 \mathrm{N} \cdot \mathrm{m}$	
B. Index:	
$\tau_{\mathrm{index,joint1}} = 106.74 \cdot 0.03 = 3.20\mathrm{N} \cdot \mathrm{m}, \tau_{\mathrm{index,joint2}} = 106.74 \cdot 0.02 = 2.13\mathrm{N} \cdot \mathrm{m}, \tau_{\mathrm{index,joint3}} = 106.74 \cdot 0.01 = 1.07\mathrm{N} \cdot \mathrm{m}$	
C. Middle:	
$\tau_{\rm middle,\ joint\ 1} = 53.37 \cdot 0.03 = 1.60 \rm N \cdot m, \tau_{\rm middle,\ joint\ 2} = 53.37 \cdot 0.02 = 1.07 \rm N \cdot m, \tau_{\rm middle,\ joint\ 3} = 53.37 \cdot 0.01 = 0.53 \rm N \cdot m$	
D. Ring:	
$\tau_{\mathrm{ring,joint1}} = 53.37 \cdot 0.03 = 1.60\mathrm{N} \cdot \mathrm{m}, \tau_{\mathrm{ring,joint2}} = 53.37 \cdot 0.02 = 1.07\mathrm{N} \cdot \mathrm{m}, \tau_{\mathrm{ring,joint3}} = 53.37 \cdot 0.01 = 0.53\mathrm{N} \cdot \mathrm{m}$	
E. Pinky:	
$\tau_{\rm pinky,joint1} = 35.58 \cdot 0.03 = 1.07\rm{N} \cdot m, \tau_{\rm pinky,joint2} = 35.58 \cdot 0.02 = 0.71\rm{N} \cdot m, \tau_{\rm pinky,joint3} = 35.58 \cdot 0.01 = 0.36\rm{N} \cdot m$	David Humanoid Hand 2/10/25 17

Tendon Analysis/Material Choice

- The thumb is under the most load
 - Joint 1 is max load for tendon
 - Assuming r is distance from thumb joint to end of tendon.

- Area/diameter needed for each material
 - Tensile strength of kevlar (2600 MPa)
 - Tensile strength steel cable (1500 MPa)

$$A=rac{F}{\sigma_{
m max}}$$

 $au_{ ext{thumb, joint 1}}$

 $r_{\mathrm{thumb, tendon}}$

$$A = rac{111.25}{2600 imes 10^6} pprox 4.28 imes 10^{-5} \, {
m m}^2 = 42.8 \, {
m mm}^2 \quad A = rac{111.25}{1500 imes 10^6} pprox 7.42 imes 10^{-5} \, {
m m}^2 = 74.2 \, {
m mm}^2$$
 $r = \sqrt{rac{4.28 imes 10^{-5}}{\pi}} = \sqrt{1.36 imes 10^{-5}} pprox 3.69 imes 10^{-3} \, {
m m}} = 3.69 \, {
m mm} \quad r = \sqrt{rac{7.42 imes 10^{-5}}{\pi}} = \sqrt{2.36 imes 10^{-5}} pprox 4.86 imes 10^{-3} \, {
m m}} = 4.86 \, {
m mm}$

 $T_{
m thumb, \, tendon}$

 $= 111.25 \,\mathrm{N}$

Shear Stresses on Joints

• Shear force is sum of $F_t + F_g$

F, is from tendon

$$V=F_t+F_g$$

- F_a is external load at fingertip
- F_t is a result of the torque at a given joint and the length of the moment arm
- Shear stress is a result of shear force divided by cross sectional area
- Cross sectional area of cylinders
- Final expanded shear stress equation in terms of torque, radius of moment arm, force at fingertip, and diameter of joint

and the $F_t=rac{T}{r}$ ded by $au=rac{\pi d^2}{4}$ $au=rac{4\left(rac{T}{r}+F_g
ight)}$

Shear Stresses on Joints cont.

- F_g from forces in finger distribution
- Assuming 1 cm moment arm
- Calculations for 2mm joint

 $au = rac{4\left(rac{T}{r}+F_g
ight)}{\pi d^2}$

- Max shear is apx 170 MPA
 - Most steel alloys have max shear of >240 Mpa
 - Other common options include
 Brass, Nickel, or Aluminum alloys

Joint 🗸 #	Torque (T) (Nm) 🗸 🗸	# Shear Force V (N) $$	# Shear Stress τ (MPa) 🗸
Thumb 1	4.45	533.95	169.96
Thumb 2	2.67	355.95	113.30
Thumb 3	1.33	221.95	70.65
Index 1	3.2	426.74	135.84
Index 2	2.13	319.74	101.78
Index 3	1.07	213.74	68.04
Middle 1	1.6	213.37	67.92
Middle 2	1.07	160.37	51.05
Middle 3	0.53	106.37	33.86
Ring 1	1.6	213.37	67.92
Ring 2	1.07	160.37	51.05
Ring 3	0.53	106.37	33.86
Pinky 1	1.07	142.58	45.38
Pinky 2	0.71	106.58	33.93
Pinky 3	0.36	71.58	22.78

Mathematical Modeling: Forward Kinematics

- Determining position and orientation of the fingertip.
- Considered a simplified robotic finger
- Using Denavit-Hartenberg parameters
 - Provides a standardized method to assign coordinate frames and parameters to each link and joint

Typical dimensions for hand:

Mathematical Modeling: Forward Kinematics Cont.

From Base to Link 1: $T_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & L_1 \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 & 0 & L_1 \sin \theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

From Link 1 to Link 2:
$$T_{2} = \begin{bmatrix} \cos \theta_{2} & -\sin \theta_{2} & 0 & L_{2} \cos \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2} & 0 & L_{2} \sin \theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$T = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & L_{1} \cos \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} & 0 & L_{1} \sin \theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_{2} & -\sin \theta_{2} & 0 & L_{2} \cos \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2} & 0 & L_{2} \sin \theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= egin{bmatrix} \cos(heta_1+ heta_2) & -\sin(heta_1+ heta_2) & 0 & L_1\cos heta_1+L_2\cos(heta_1+ heta_2) \ \sin(heta_1+ heta_2) & \cos(heta_1+ heta_2) & 0 & L_1\sin heta_1+L_2\sin(heta_1+ heta_2) \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

Tyler Humanoid Hand 2/10/25 22

Mathematical Modeling: Forward Kinematics Cont.

Using the matrix multiplication:

$$egin{aligned} x &= L_1\cos heta_1 + L_2\cos(heta_1+ heta_2)\ y &= L_1\sin heta_1 + L_2\sin(heta_1+ heta_2) \end{aligned}$$

Solving equations using typical dimensions:

Conclusion:

- 6.14 cm in the x axis and 5.04 cm in the y axis from the base joint
- one can precisely determine the location of the finger in space
- Used for grasping objects or fine manipulations

$$y = 5\sin\left(\frac{\pi}{4}\right) + 3\sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right)$$
$$= 5\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{1}{2}\right)$$
$$\approx 3.54 + 1.50$$
$$\approx 5.04 \text{ cm}$$
$$x = 5\cos\left(\frac{\pi}{4}\right) + 3\cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right)$$
$$= 5\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{\sqrt{3}}{2}\right)$$

 $pprox 3.54 + 2.60 \ pprox 6.14 \, {
m cm}$

Tyler Humanoid Hand 2/10/25 23

Mathematical Modeling: Inverse Kinematics

• Determine angle to acquire precise positions

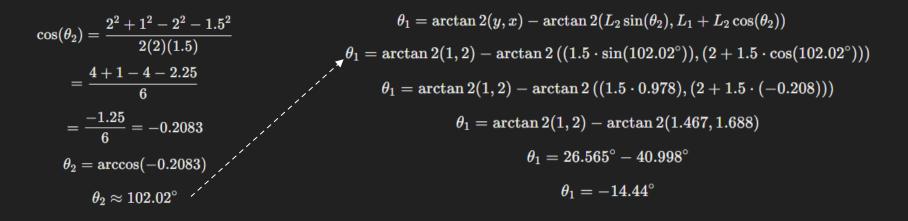
Ex. If you wanted the end position to be (2,1)

Assume arm lengths are both L1=2, L2=1.5

The maximum reach of the arm is:

$$L_1 + L_2 = 2 + 1.5 = 3.5$$

The distance to the target is:


$$d=\sqrt{x^2+y^2}=\sqrt{2^2+1^2}=\sqrt{5}pprox 2.236$$

Since $d \leq 3.5$, the target is **reachable**.

$$egin{split} heta_2 &= \cos^{-1}\left(rac{x^2+y^2-L_1^2-L_2^2}{2L_1L_2}
ight) \ _1 &= an^{-1}\left(rac{y}{x}
ight) - an^{-1}\left(rac{L_2\sin heta_2}{L_1+L_2\cos heta_2}
ight) \end{split}$$

Justin Humanoid Hand 2/10/25 24

Mathematical Modeling: Inverse Kinematics

Angles 1 and 2 are found which gives the end of the robotic arm a position of (2,1) with specific arm length values

Budget

	Budget Robotic Hand												
	Total Budget												
Item #	Item	Description	Planed Aquisiton Date	Actual Aquisiton Date Price Per Ur		# of Units	Estimated Total Price	Actual Total Price					
1	Motors	iPower GM2804 Gimbal Motor w/ AS5048A Encoder	3/10/2025		\$38.90	10	\$389.00						
2	Nylon 6	acts as the tendons for the hand (1/16' nylon chord)	3/10/2025		\$15	1	\$15.00						
3	Filament	Pro Series Carbon Fiber Nylon	3/10/2025		\$62	2	\$124						
5							\$0						
6							\$0						
7		\$0											
8							\$0						
9							\$0						
10							\$0						
			Estima	ited Remaining Budget				\$1,472.00					
			Actu	al Remaining budget				\$2,000					

Schedule

Humanoid Hand Gantt Chart

Project star Mon, 1/13/2025

Display week 2

							Jan 20, 2025	Jan 27, 2025	Feb 3, 2025	Feb 10, 2025	Feb 17, 2025	Feb 24, 2025	Mar 3, 2025	Mar 10, 2025	Mar 17, 2025
TASK	ASSIGNED TO	PROGRESS	START	END	EST. HOURS	ACTUAL HOURS	20 21 22 23 24 25 20 H T W T F S S	6 27 28 29 30 31 1 3 5 M T W T F S 5	3 4 5 6 7 8 9 R T W T F S 9	9 10 11 12 13 14 15 14 5 M T W T F S S	17 18 19 20 21 22 23 N T W T F S S	24 25 26 27 28 1 M T W T F S	2 3 4 5 6 7 8 5 R T W T F S	9 10 11 12 13 14 15 1 5 N T W T F S S	6 17 18 19 20 21 22 2 5 H T W T F S S
Phase 1 (1st Prototype Demo)															
Work on Presentation 1	Tean	90%	1/27/25	2/10/25	~	~									
Establish Finger Design	Tean	50%	2/4/25	2/18/25	~	~									
Establish Control Scheme	Joseph, Noah	25%	2/4/25	2/18/25	10										
Order Preliminary Parts	Justin	0%	2/18/25	2/21/25											
Presentation 2	Tean	0%	2/18/25	3/2/25	~	~									
Prototype 1	Team	5%	2/18/25	3/31/25	~	~									
		_													
Conclusion															

[1] D. Maloney, "Mechatronic Hand Mimics Human Anatomy To Achieve Dexterity," Hackaday, Oct. 18, 2018. https://hackaday.com/2018/10/18/mechatronic-hand-mimics-human-anatomy-to-achieve-dexterity/ (accessed Jan. 25, 2025).

[2] "Shadow Robot Company." https://www.shadowrobot.com/

[3] "DexHand - An Open Source Dexterous Humanoid Robot Hand," *DexHand - An Open Source Dexterous Humanoid Robot Hand*. https://www.dexhand.org/

[4] "Free CAD Designs, Files & 3D Models | The GrabCAD Community Library," *Grabcad.com*, 2025. https://grabcad.com/library/supopen-arms-1 (accessed Jan. 25, 2025).

[5] M. Controzzi, C. Cipriani, B. Jehenne, M. Donati and M. C. Carrozza, "Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 499-502, doi: 10.1109/IEMBS.2010.5627148. keywords: {Joints;Fingers;Thumb;Humans;Actuators;Flexible printed circuits;Wrist}

[6] G. Gao, L. Gerez, and Minas Liarokapis, "Adaptive, Tendon-Driven, Affordable Prostheses for Partial Hand Amputations: On Body-Powered and Motor Driven Implementations," *PubMed*, pp. 6656–6660, Jul. 2019, doi: https://doi.org/10.1109/embc.2019.8857187.

[7] "Advanced Humanoid Robotic Hand Technologies | T2 Portal." *Technology.nasa.gov*, technology.nasa.gov/patent/MSC-TOPS-102.[8] Borghesan, G, et al. *Design of Tendon-Driven Robotic Fingers: Modeling and Control Issues*.

[9]Kim, Uikyum, et al. "Integrated Linkage-Driven Dexterous Anthropomorphic Robotic Hand." *Nature Communications*, vol. 12, no. 1, Dec. 2021, https://doi.org/10.1038/s41467-021-27261-0.

[10]Li, Xiaodong, et al. "Finger Kinematics during Human Hand Grip and Release." *Biomimetics*, vol. 8, no. 2, 8 June 2023, pp. 244–244, www.ncbi.nlm.nih.gov/pmc/articles/PMC10296280/, https://doi.org/10.3390/biomimetics8020244. Accessed 15 Mar. 2024.

[11]Sparkfun. "Servos Explained - SparkFun Electronics." *Www.sparkfun.com*, www.sparkfun.com/servos.

[12]Xu, Zhe, and Emanuel Todorov. Design of a Highly Biomimetic Anthropomorphic Robotic Hand towards Artificial Limb Regeneration.

[13] U. Scarcia, Design and control of robotic hands - Ams Dottorato, March 2021,

http://amsdottorato.unibo.it/7085/1/Umberto_Scarcia_tesi.pdf (accessed Feb. 6, 2025).

[14] R. Fourie, "Mechanical design of a biologically inspired prosthetic hand, The Touch hand 3," UKZN,

https://researchspace.ukzn.ac.za/server/api/core/bitstreams/eaf25fb9-f9ed-417c-a91a-7ced68cba2c4/content (accessed Feb. 6, 2025).

[15] T. Mańkowski, J. Tomczyński, K. Walas, and D. Belter, "Put-hand-hybrid industrial and Biomimetic Gripper for Elastic Object Manipulation," MDPI,

https://www.mdpi.com/2079-9292/9/7/1147 (accessed Feb. 6, 2025).

[16] H. Chen and Z. Wang, "Performance optimizing of pneumatic soft robotic hands using wave-shaped contour actuator," Results in Engineering,

https://www.sciencedirect.com/science/article/pii/S2590123024017080?pes=vor&utm_source=scopus&getft_integrator=scopus (accessed Feb. 6, 2025).

[17] L. Brombach, Practical Robotics in C++. BPB Publications, 2021.

[18] Bjarne Stroustrup and Addison-Wesley (1942-1999, The C++ programming language. Upper Saddle River: Addison-Wesley, Cop, 2018.

[19] O. Kroemer, S. Niekum, and G. Konidaris, "A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms," *Journal of Machine Learning Research*, vol. 22, Jan. 2021, Accessed: Feb. 03, 2025. [Online]. Available: https://www.jmlr.org/

[20] R. Ma and A. Dollar, "On Dexterity and Dexterous Manipulation," presented at the 15th International Conference on Advanced Robotics, Yale, Jun. 2011. Accessed: Feb. 05, 2025. [Online]. Available: https://www.eng.yale.edu/grablab/pubs/Ma_ICAR2011.pdf

[21] M. Santello, M. Flanders, and J. F. Soechting, "Postural Hand Synergies for Tool Use," The Journal of Neuroscience, vol. 18, no. 23, pp. 10105–10115, Dec. 1998, doi: https://doi.org/10.1523/jneurosci.18-23-10105.1998.

[22] "Home," Robot Nano Hand - open source robot hand project. https://robotnanohand.com/

[23] "ethz-adrl/control-toolbox: The Control Toolbox - An Open-Source C++ Library for Robotics, Optimal and Model Predictive Control," *GitHub*, 2025. https://github.com/ethz-adrl/control-toolbox (accessed Feb. 06, 2025).

[24] H. T. L. Doan, H. Arita, and K. Tahara, "Tactile sensor-less fingertip contact detection and force estimation for stable grasping with an under-actuated hand -ROBOMECH journal," SpringerOpen,

https://robomechjournal.springeropen.com/articles/10.1186/s40648-024-00273-3 (accessed Feb. 6, 2025).

[25] P. Corke, in Robot Arm Kinematics, vol. 146, Brisbane: Queensland University of Technology, 2023, pp. 253-305

[26] L. C. Farrell, T. A. Dennis, and J. Badger, "Simply Grasping Simple Shapes: Commanding a Humanoid Hand with a Shape-Based Synergy,"

in Springer Proceedings In Advanced Robotics, vol. 10, Houston, texas: Rice University, 2020, pp. 541–553

[27] K. Busbee, "Programming Fundamentals -A Modular Structured Approach using C++." Accessed: Feb. 06, 2025. [Online]. Available: <u>https://tfetimes.com/wp-content/uploads/2015/06/Programming.pdf</u>

[28] R. Halterman, "Fundamentals of Programming C ++ D R A F T," 2015. Accessed: Apr. 10, 2023. [Online]. Available: <u>https://tfetimes.com/wp-content/uploads/2015/04/progcpp.pdf</u>

[29] G. Stillfried and P. Thesis, "Kinematic modelling of the human hand for robotics." Accessed: Feb. 08, 2025. [Online]. Available: <u>https://elib.dlr.de/100591/1/Stillfried_phd_main_v1_4.pdf</u>

[30] A. Landi, "Human Hand Function," Journal of Hand Surgery (European Volume), vol. 32, no. 4, pp. 484–485, Aug. 2007, doi: https://doi.org/10.1016/j.jhse.2007.04.015.

[31] "Functional anatomy and biomechanical concepts in the hand," Aofoundation.org, 2016. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/further-reading/hand-functional-anatomy-andbiomechanical-concepts

[32] Ł. Jaworski and R. Karpiński, "BIOMECHANICS OF THE HUMAN HAND," Journal of Technology and Exploitation in Mechanical Engineering, vol. 3, no. 1, pp. 28–33, Jun. 2017, doi: https://doi.org/10.35784/jteme.536.

[33] "BIOMECHANICS OF THE HAND," ouhsc.edu. https://ouhsc.edu/bserdac/dthompso/web/namics/hand.htm

[34] M.-J. Liu, C.-H. Xiong, L. Xiong, and X.-L. Huang, "Biomechanical Characteristics of Hand Coordination in Grasping Activities of Daily Living," PLOS ONE, vol. 11, no. 1, p. e0146193, Jan. 2016, doi: <u>https://doi.org/10.1371/journal.pone.0146193</u>.

[35] "Dexterous Hand documentation — Dexterous Hand latest documentation," shadow-robot-company-dexterous-hand.readthedocs-hosted.com. https://shadow-robot-company-dexterous-hand.readthedocs-hosted.com/en/latest/

[36] "Shadow Dexterous Hand Technical Specification," 2024. Accessed: Feb. 08, 2025. [Online]. Available: https://www.shadowrobot.com/wp-content/uploads/2024/06/20240610-UPDATEDshadow_dexterous_hand_e_technical_specification.pdf

[37] J.-D. Warren, J. Adams, and H. Molle, *Arduino Robotics*. Berkley: Apress, 2011.

[38] R. N. Jazar, *Theory of Applied Robotics*. Springer, 2023.

[39] K. M. Lynch and F. C. Park, *Modern Robotics : Mechanics, Planning, and Control.* Cambridge: University Press, 2017.

[40] B. M. Yousuf, A. Mehdi, A. S. Khan, A. Noor, and A. Ali, "Robust Feedback Control Design of Underactuated Robotic Hands with Selectively Lockable Switches for Amputees," *Journal of Robotics*, vol. 2018, p. e6835968, Jun. 2018, doi: https://doi.org/10.1155/2018/6835968.

[41] D. Tuchscherer, A. Weibert, and F. Tränkle, "Modern C++ as a modeling language for automated driving and human-robot collaboration," pp. 136–142, Sep. 2016, doi: https://doi.org/10.1145/2976767.2976772.

[42] PacktPublishing, "GitHub - PacktPublishing/Hands-On-Robotics-Programming-with-Cpp: Hands-On Robotics Programming with C++, published by Packt," *GitHub*, 2018. https://github.com/PacktPublishing/Hands-On-Robotics-Programming-with-Cpp?tab=readme-ov-file (accessed Feb. 09, 2025).

[43] "Ryan Logsdon / Raspberry Pi Settings for Robotics · GitLab," *GitLab*, 2025. https://gitlab.com/ryanlogsdon/raspberry-pi-settings-for-robotics (accessed Feb. 09, 2025).

[44]InformedHealth.org. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: How do hands work? [Updated 2021 May 20] https://www.ncbi.nlm.nih.gov/books/NBK279362/

[45] P. W. Brand and A. Hollister, *Clinical Mechanics of the Hand*. St. Louis: Mosby Year Book, 1993.

[46] E. Nazma and S. Mohd, "TENDON DRIVEN ROBOTIC HANDS: A REVIEW," *International Journal of Mechanical Engineering and robotics research*. doi:10.18178/ijmerr

[47] Zhe Xu and E. Todorov, "Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration," 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3485–3492, May 2016. doi:10.1109/icra.2016.7487528

[48] Zhe Xu, V. Kumar, and E. Todorov, "A low-cost and modular, 20-DOF anthropomorphic robotic hand: Design, actuation and modeling," *2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids)*, pp. 368–375, Oct. 2013. doi:10.1109/humanoids.2013.7030001

[49] "Bionicsofthand," BionicSoftHand | Festo USA, https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2015-to-2017/bionicsofthand-id_68106/ (accessed Feb. 9, 2025).