### WATTER Jacks Finalized Testing (MECC25)

Asher Aspili: Financial Manager & Test Engineer Patrick Grosse: Manufacturing Engineer & CAD Engineer Aiden Lee: Project Manager & Logistics Manager

# **Project Description**

### The Marine Energy Collegiate Competition (MECC)

- An annual competition organized by the U.S. Department of Energy
- Design solutions for harnessing marine energy (tidal, current, waves)
- Project goal: rigorous data testing & data collection of final prototype (in closed water)
- Able to relate our design to the *Blue Economy* (economic growth through the ocean) through a business plan challenge

### **Sponsors**

- U.S. Department of Energy
- Northern Arizona University
- NAU Energy Club
- Kenautics inc.




Figure [1]: Examples of marine energy generators

### **Design Requirements Summary**

| Customer Requirements:                | CR# | Engineering Requirements:                         | ER# |
|---------------------------------------|-----|---------------------------------------------------|-----|
| User Safety                           | CR1 | Resistance to Marine Environment: Water resistant | ER1 |
| Design: Balanced, efficient, reliable | CR2 | Average Energy Output: 200W/hr                    | ER2 |
| Cost: Budget-friendly, high output    | CR3 | Continuous Operation: 4800 W/day                  | ER3 |
| Environment: Marine life safe         | CR4 | Marine Compatibility: 6 +                         | ER4 |
| Aesthetics: Coastal visual harmony    | CR5 | Majority Use of Marine Energy: + 51%              | ER5 |
| Adaptability: Multi-climate tested    | CR6 | Auto Shutdown: 2-second response                  | ER6 |
| Manufacturing: Quick, easy build      | CR7 |                                                   |     |
| Energy Harvesting Method              | CR8 |                                                   |     |

# **Top Level Testing Summary**

Table [2]: Table of Testing Plans (MECC compliant)

| Test Name Range          |                       | Risks               | Mitigations           | CR#/ER#            |  |  |
|--------------------------|-----------------------|---------------------|-----------------------|--------------------|--|--|
| Internak Air Pressure    | 1.5 atm, 2 hrs        | Leaks               | Sealant               | ER1, CR1, CR4, CR6 |  |  |
| Hydrophobic              | No Leaks              | Leaks               | Same as Pressure Test | ER1, CR1, CR4, CR6 |  |  |
| Electronics              | Within limits         | Corrosion, Overload | Grease, Thick Wiring  | ER2, ER8           |  |  |
| Environmental Monitoring | Stable Readings       | None                | N/A                   | CR4                |  |  |
| Neutral Buoyancy         | Positive/near-neutral | Sinking             | Increase Volume       | ER1, ER6,          |  |  |
| Counterweight Adjustment | Optimized Rotation    | Imbalance           | Adjust Weight         | ER6                |  |  |
| Charge Time              | Varied Charge Times   | Inefficiency        | Analyze Data          | ER2, ER3, ER4      |  |  |
| Drop/Stress              | No Damage             | Failure             | Reinforce Structure   | ER1, ER7           |  |  |

### **Detailed Testing Plans** (Hydrophobic & Internal Pressure)

- Test/experiment summary:
  - DR's being tested.
  - Is the device air/water resistant? CR1, CR2, CR7, ER1, ER3, ER4
  - Equipment
  - Closed body of water, air compressor/air pump, meter stick, timer
  - Isolated Variables
  - Internal pressure
  - -Calculated Variables.
  - Internal pressure & time
- Procedure
  - Originally, seal each half of the buoy and pressurize them to 1.5 atm
  - 1. Submerge the buoy into the water and hold it in the water until visually
  - we see bubbles
  - 2. Open the buoy and see if the internal area is dry/wet
- Results
  - The device did leak around the top of the device and was not sealed
  - properly during the first test.
  - Second test resulted in minor leaking which is reparable.
  - Update: it is now airtight & watertight



Video [1]: Hydrophobic Test at WEC Center

### **Detailed Testing Plans** (Electronics & Environmental Monitoring)

- Test/experiment summary:
  - DR's being tested.

Are the electronics in working order and can we get a reading on on-board the circuit boards? CR1, CR2, CR6, CR7, CR8, ER2, ER3, ER5, ER6

- Equipment
- Electronic assembly, mobile device, hand/drill
- Isolated Variables
- **RPM & connectivity**
- Calculated Variables
- Power Visualization & connectivity
- Procedure

1. Connect the wires to the circuit boards and ensure that all the boards are powered.

- 2. Connect mobile device to Electronic assembly
- 3. Rotate axle to confirm power is being generated via app
- 4. Check app to see any delay in readings
- Results

Entire electronic system gets power when turned on. The Electronic subassembly connects to the mobile device and gives near real time readings.





Figure [2]:Connected App with Power Readings

Video [2]: Electronic Subassembly Powered On

## **Detailed Testing Plans** (Neutral Buoyancy & Counterweight Adjustment)

#### Test/experiment summary:

- DR's being tested.

Is the buoy positively/neutrally buoyant? What is the needed counterweight? CR4, CR5, CR6, CR8, ER3, ER4, ER5,

- Equipment

#### Closed body of water and equivalent mass of Internals to simulate

- Isolated Variables.

#### Weight/density of buoy

- Calculated Variables.

Displacement of water relative to buoy and Buoyancy

- Procedure
  - 1. Open the device and add objects of equivalent mass to the internals into it.
  - 2. Place the device in water and let it idle and see if the buoy will float or sink.
  - 3. Remove the device from the water
- Results

The device was positively buoyant, even with the internal mass being slightly higher than the mass of the actual internals. Need to do calculations for counterweight.

Update: sum of needed weight is ~45N for scale model (counterweight + anchor/mooring line)



Video [3]: Buoyancy testing in CWC Tank

## **Detailed Testing Plans** (Charge Time)

- Test/experiment summary:
  - DR's being tested.

What is the charge rate of the buoy? ER2, ER3, ER4

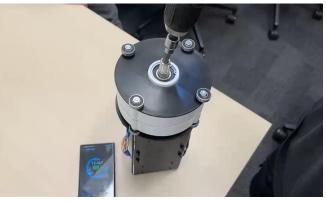
- Equipment

Drill/dynamometer, Torque adapter, tachometer, mobile device, stopwatch, electronic assembly

- Isolated Variables.

RPM(short time), Torque

- Calculated Variables.


RPM (longer time)

- Procedure
  - 1. Connect drill to buoy & buoy to app
  - 2. Spin the drill until app shows charging
  - 3. Run spindle for 60 secs, measure RPM with tachometer and change in charge
  - 4. Do calculations for 24-hour period
- Results

The minimal RPM needed to charge the buoy is 400 RPM it will take 20 min to charge



Figure [3]: DO NOT TRY THIS AT HOME



#### NORTHERN ARIZONA UNIVERSITY

8 Aiden/Patrick

# **Specification Sheet Preparation**

#### Table [3]: Customer Requirements

| Customer Requirements   | CR Met? | Client Acceptable |
|-------------------------|---------|-------------------|
| User Safety             | Yes     | Yes               |
| Design Presentation     | Yes     | Yes               |
| Cost Efficiency         | Yes     | TBD               |
| Environmentally Safe    | Yes     | Yes               |
| Aesthetically Appealing | Yes     | Yes               |
| Ease of Manufacturing   | Yes     | Yes               |
| Energy Harvesting       | Yes     | Yes               |

# **Specification Sheet Preparation**

| Engineering Requirements Target Values      |                              | ER Met? | Measured/Calculated   | Client Acceptable |  |  |  |
|---------------------------------------------|------------------------------|---------|-----------------------|-------------------|--|--|--|
| Resistant to marine<br>environment          | IPX7                         | Yes     | IPX7                  | Yes               |  |  |  |
| Energy Output                               | <mark>60 W/hr</mark>         | Yes     | <mark>500 W/hr</mark> | Yes               |  |  |  |
| Continuous Operation                        | 1440 W/day                   | Yes     | 11,000 W/day          | Yes               |  |  |  |
| Efficiency                                  | <mark>&gt;50%</mark>         | Yes     | <mark>~85%</mark>     | Yes               |  |  |  |
| Controlled Testing                          | Testable Size ~ .7m (length) | Yes     | 0.7 m                 | Yes               |  |  |  |
| Compatible with diverse marine environments | >= 6                         | Yes     | Yes                   | Yes               |  |  |  |
| Majority Marine Energy                      | >=51%                        | Yes     | 100%                  | Yes               |  |  |  |
| Remote Shutdown                             | 10 second                    | Yes     | ~5 sec                | Yes               |  |  |  |

## QFD

|                                           | esistance to Marine Environment                                  |                     |             | /                               |               |                     |           |                                            |                                             |                               |                            |          |                              |                |   |
|-------------------------------------------|------------------------------------------------------------------|---------------------|-------------|---------------------------------|---------------|---------------------|-----------|--------------------------------------------|---------------------------------------------|-------------------------------|----------------------------|----------|------------------------------|----------------|---|
| 2 Energy Output<br>3 Continuous Operation |                                                                  |                     |             | $\square$                       |               |                     |           |                                            |                                             |                               |                            |          |                              |                |   |
| з                                         | Continuous Operation                                             |                     |             |                                 |               | $\sim$              |           |                                            |                                             |                               |                            |          |                              |                |   |
| 4 Efficiency                              |                                                                  |                     |             | +                               |               | +                   |           |                                            |                                             |                               |                            |          |                              |                |   |
| 5 La                                      | Laboratory/Controlled Testing Compatability                      |                     |             |                                 | -             |                     |           |                                            |                                             |                               |                            |          |                              |                |   |
| 6 0                                       | ompatibility with Diverse Marine Condi                           | tions               |             |                                 | +             | +                   |           | -                                          |                                             |                               |                            |          |                              |                |   |
|                                           | a jority Use of Marine Energy                                    |                     |             | +                               | -             |                     |           |                                            |                                             |                               |                            |          |                              |                |   |
| 8 <b>R</b> (                              | emote Shutdown Capability                                        |                     |             | +                               | +             | +                   |           |                                            |                                             |                               | $\sim$                     |          |                              |                |   |
|                                           |                                                                  |                     |             |                                 |               | Technic             | alReo     | quiren                                     | nents                                       |                               |                            | Ben      | ch Ma                        | rking          |   |
|                                           | Customer Needs                                                   | Customer<br>Weights | Weight<br>% | esistance to Marine Environment | insrgy Output | ontinuous Operation | fficiency | aboratory/Controlled Testing Compatability | ompatibility with Diverse Marine Conditions | Majority Use of Marine Energy | Remote Shutdown Capability | lorPower | Sea Wave Energy Limited SWEL | Eco Wave Power |   |
| 1 <mark>U</mark>                          | ser Safety                                                       | 5                   | 6.60        | 4                               |               |                     |           | _                                          |                                             |                               | 9                          | 7        | 7                            | 6              |   |
| 2 D                                       | esign Presentation                                               | 2                   | 16.50       | 6                               | 6             |                     |           | 5                                          | 5                                           | 5                             | 5                          | 00       | œ                            | 9              |   |
|                                           | ost Efficiency                                                   | 4                   | 8.25        |                                 |               |                     | 7         | 6                                          |                                             |                               |                            | 4        | 00                           | 7              |   |
| 4 Er                                      | nvironmental Safety                                              | 4                   | 8.25        | 5                               |               |                     |           |                                            | 6                                           | 6                             | 8                          | LO       | 4                            | 8              |   |
| 5 <mark>A</mark>                          | esthetically Appeal                                              | 3                   | 11.00       | 6                               | 6             | 6                   |           |                                            |                                             | 6                             | 6                          | 9        | 9                            | 4              |   |
| 6 <mark>A</mark>                          | daptability Across Climates                                      | 5                   | 6.60        | 7                               | 7             | 8                   | 9         | 7                                          | 8                                           | 8                             | 8                          | 2        | 7                            | 5              |   |
|                                           | se of Manufacturing                                              | 5                   | 6.60        | 8                               | 8             | 8                   | 8         | 8                                          | 8                                           | 8                             | 8                          | 4        | ю                            | 7              |   |
| 8 <mark>Er</mark>                         | nergy Harvest                                                    | 5                   | 6.60        | 7                               | 7             | 7                   | 7         | 6                                          | 6                                           | 7                             | 7                          | 2        | 4                            | 8              |   |
|                                           |                                                                  | Requirem            | ent Units   | IPXX                            | W/hr          | W/ day              |           | СМ                                         | Varity                                      | %                             | t,d                        |          |                              |                | • |
| Technical Requirement Targets             |                                                                  |                     |             | 60                              | 1440          | >                   | 0.7       | >= 6                                       | >=<br>51%                                   | 10s,<br>5m                    |                            |          |                              |                |   |
|                                           | Absolute Technica I Importance<br>Relative Technica I Importance |                     |             |                                 | 140<br>7      | 133<br>8            | 148<br>3  | 139<br>2                                   | 144<br>6                                    | 167<br>5                      | 220                        |          |                              |                |   |
| Relative Technical Importance             |                                                                  |                     | 4           | 7                               | 8             | 3                   | 2         | 6                                          | 5                                           | 1                             |                            |          |                              |                |   |

Figure [3]: House of Quality

Thank You! Questions?

