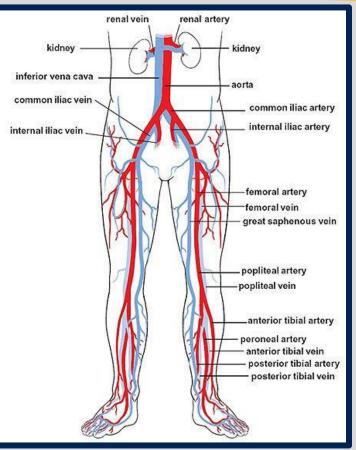
Replicable, Inorganic Calcified Vessel Models

Sponsored by: Gore & Associates – Medical

Gavin Lazurek – Logistics Manager Scott Alex – Manufacturing/CAD Engineer Jamie Dellwardt – Project/Financial Manager James Anteau – Test Engineer

1.1 Project Description

Client:


• W.L. Gore & Associates, Inc. – Medical

Project Scope:

 Design, build, and test a replicable model of calcified lesions in the peripheral arterial system for deployment of vascular interventional devices, under simulated use conditions, using inorganic materials.

Project Significance:

 Accelerate the development of treatments for peripheral arterial disease (PAD) by improving functionality and accessibility of research models

Peripheral Arterial System

1.2 Deliverables

Course Work:

- Project Selection
- QFD House of Quality
- Presentation 1: Background & Mathematical Modeling
- Report 1
- Presentation 2: Concept Generation & Evaluation
- Presentation 3: Design Proposal
- Report 2
- Prototyping Demonstration Phase
- Hardware Status Updates; 33%, 67%, & 100%
- Final Presentation & UGRADs

Client Work:

- Minimum 3 varying vessel layouts
- Justified material selection for vessels and lesions
- Final presentation to Gore engineers
- Performance of stent deployment to determine testing effectiveness
- Durability of repeated testing with success
- Ergonomics of intended use

1.3 Success Metrics

- Models are clear, and device deployment is unobstructed
 - Transparency measurement is >50%
- Vessels and lesions are of realistic size, shape, texture, and flexibility
 - Length measurement is >20 cm to allow enough room to deploy devices; diameter measurement is 5-9 mm, wall thickness measurement is 1-2 mm, elastic modulus is 1.5-6.5 MPa as in real femoral arteries
- Lesions are at the proper durometer hardness
 - Hardness measurement is 90 Shore A as in real calcified lesions
- Lesions are adhered to vessels at the proper strength
 - Overlap adhesive strength is 15 MPa as in real cases of peripheral arterial disease
- The models are safe to store and to operate
 - Assessed by compliance to relevant ANSI/OSHA standards
- Pressure transducers and flow rate sensors output accurate data
- 12 models are produced
- Only non-biologic materials are used
- Replicable procurement, manufacturing, and assembly methods are documented
- The entire cost of the project is under the team's budget of \$3,000 + fundraising

2.1 & 2.2 Design Requirements

Customer Requirements:

CR1 – Replicability

- Product can be manufactured by Gore CR2 Models simulated use conditions
- Accurately models vessel and lesion CR3 – Non-biological materials
- Entirely synthetic model CR4 – OSHA/ANSI compliance
- Safety when manufacturing/operating CR5 Visualization of deployment
- For demonstration purposes CR6 Durability
- Able to be used for many tests CR7 – Ergonomic for intended use
- Accessible and convenient to operate

Engineering Requirements:

ER1 – Vessel properties

- Synthetic vessel to have same elasticity and strength as biological lesion
- ER2 Vessel dimensions
- Synthetic vessel dimensions to fit stent
- ER3 Lesion properties
- Synthetic lesion to have same hardness and adhesion to wall as biological lesion
- ER4 Lesion dimensions
- Accurately represent lesion shapes
- ER5 Fluid properties
- Accurately represent blood
- ER6 Engineering standard compliance
- Product must be safe

ER7 – Cost

• Under total budget of \$3,000

2.3 House of Quality

									_		92 - CA		Technical Requirements					Customer Opinion Survey					
1 Vessel Properties		Project: Calcified Vessel Model Date: 9/11/ 2024					Customer Needs		/essel Properties	/essel Dimensions	esion Dimensions	esion Properties	luid Properties	Engineering Standard Compliance	Manufaturing Cost	1 Poor	2 Acceptable	4	5 Excellent				
2	Vessel Dimensions		N							Replicability	11 12	-	-				9	9		4	C	B	
	Lesion Dimensions		9	>					Mo	dels simulated use conditions	5	9	9	9	9	9				А	BC		
	Lesion Properties	3	3	6				-		Non-biological materials	3	9			9	9			1	4		BC	
	Fluid Properties	3	3	0	1				-	OSHA/ANSI standard Visualization of deployment	4	3			3	6	9	6			A	BC BC	
		2	3		1				-	Durability	2	6	3	3	6	0	- 	3		A	ABC		
	Engineering Standard Compliance	-							Ergonomic for intended use	2		6	6				3				ABC		
7	Manufaturing Cost	perties C-	1000		-1 Requi) Standard	ng Cost		Technical Requirement	t Units	Pressue (kPa) Opecity (%)	Langth (cm) Thickness (mm) Diametorithm)	Length (mm) Thickness (mm) Angle (seg)	Baergah (Pa) Dunometer (PB)	How rate (mL/s) Dynamic viscosity (Pa*s) Density (kg/m^3)	8	USD	B P	reative Bi reclinic M ivitro Lab	edical S	Simulatio	
	Customer Needs	Vessel Properties	Vessel Dimensions	Lesion Dimensions	Lesion Properties	Fluid Properties	Engineering Compliance	Manufaturing		Technical Requirement Ta	argets	11-17 MP/a 50%	-30 cm 1-2 mm 5-8 mm	5 mm 0.5 mm 180*	7 Pa 70 HB	7.2 mL/s 0.003-0.006 Pa*s 1060 kg/m/s	100%	CIEN CODES					

3.1 Benchmarking

Existing Vessel Model Designs

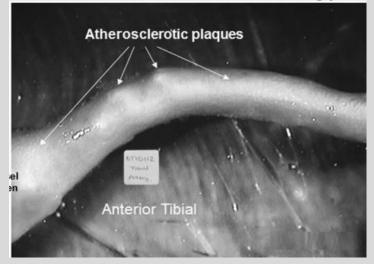
There are many existing simulation models that are designed to simulate the human body. Here we will review three existing designs, devices, and or sub-systems that are potential considerations for our project scope and project solution. These three existing benchmarks have been applied to similar context relevant to our project scope.

Creative Biolabs 3D Biology

- Research Models
- Testing, experimenting and devices for vascular intervention
- Cardiovascular disease

Preclinic Medical Simulation

- Numerous models that are specific to certain areas of the arterial system (WB)
- Offers endoscopy simulators
- Models used for training medical professionals


Vivitro Labs – Simulators

- Endovascular simulator
- Deployment accuracy
- Adaptability; easy to reconfigure to different model sizes and connection types

Scott Alex | 4/11/2025 | Gore Calcified Vessel Model | 8

3.1 Benchmarking

Creative Biolabs 3D Biology

Preclinic Medical Simulation

Vivitro Labs – Simulators

Atherosclerotic tissue sample

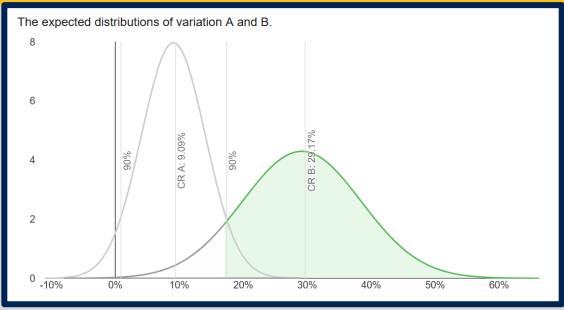
Silicone cardiac vessels

Endovascular Simulator

Materials Science and Engineering: An Introduction, 10th Edition [1]	Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models [6]
Schaum's Outline of Probability and Statistics, 4th Edition [2]	Ultrasound determination of total arterial wall thickness [7]
GORE [®] VIABAHN [®] Endoprosthesis [3]	Cardiovascular implants — Endovascular devices (ISO 25539-2:2020) [8]
A new optical coherence tomography-based calcium scoring system to predict stent under expansion [4]	How to design for FFF 3D printing [9]
Carotid Artery Stenting for Calcified Lesions [5]	Product Selection Guide [10]

Endovascular Today: Stent device guide [11]	Viabahn stent instruction manual [14]
A computational study of effects of material properties, strain level, and friction coefficient on smart stent behavior and peripheral artery performance during the interaction process [12]	W. L. GORE & ASSOCIATES ENHANCES GORE [®] VIABAHN [®] ENDOPROSTHESIS PORTFOLIO WITH LOWER PROFILE DELIVERY [15]
Harrison's Principles of Internal Medicine, 21st edition [13]	OSHA Regulations [16]

Jamie Dellwardt | 4/11/2025 | Gore Calcified Vessel Model | 11


Biocompatible 3D Printing Resins for Medical Applications [17]	3D Printed Biomedical Devices and their Applications [20]
Research Models for Studying Vascular Calcification [18]	Vascular Corrosion Casting [21]
Comparing Traditional and Contemporary Manufacturing Methods [19]	3D Printed Molds for Injection Molding [22]

Endovascular Simulator (vivitrolabs.com) [23]	CRIMSON - An open-source software framework for cardiovascular integrated modelling and simulation [28]
Preclinic Medtech – Medical Simulator [24]	Anatomy, Blood Vessels [29]
Central Versus Peripheral Artery Stiffening and Cardiovascular Risk [25]	Blood Flow in Vessels – Circulation [30]
Cardiovascular Physiology - Chapter 6: The Peripheral Vascular System; McGraw Hill [26]	Tortora's Principles of Anatomy & Physiology [31]
Peripheral Arterial Disease [27]	"Elastic 50A resin V2," Formlabs [X]

3.3 Mathematical Modeling

133 Calcified Lesions

	Thickness >0.5 mm	Thickness ≤0.5 mm
Patients	100	33
Stent expansion <70%	10.0% (10/100)	0.0% (0/33)
	Length >5 mm	Length ≤5 mm
Patients	57	43
Stent expansion <70%	17.5% (10/57)	0.0% (0/43)
	Angle >180°	Angle ≤180°
Patients	24	33
Stent expansion <70%	29.2% (7/24)	9.1% (3/33)

Two-tailed A/B test for degree of vessel occlusion vs stent under expansion rate

- z-score: 1.9044, p-value: 0.0569
- The significance of the change in experimental success rate is greater than 90%.
- Critical dimensions for stent underexpansion: 0.5 mm thickness, 5 mm length, 180° angle.

3.3 Mathematical Modeling

Equation

$$P_{pump} = \frac{Sg \cdot \gamma \cdot Q \cdot H}{\eta} = \frac{1.066 \cdot 62.43 \cdot 0.00235 \cdot 3}{0.8} = 0.5864 \, lb \cdot \frac{ft}{s} = 0.0011 \, hp$$

Variables

Sg (blood) = $1.048 \cdot 1.066$ γ (water) = 62.43 lb/ft^3 H (maximum) = 3 ftQ = $300 \cdot 400 \text{ mL/min} \rightarrow 0.00235 \text{ ft}^3/\text{s}$ $\eta \approx 80\%$

Conclusion

Required power output for pump is 0.0011 hp, which falls well within the range of commercially-available pumps

3.3 Mathematical Modeling

Define WSS:

Wall shear stress (τ) is the force created by fluid flow and the internal surface of a vessel.

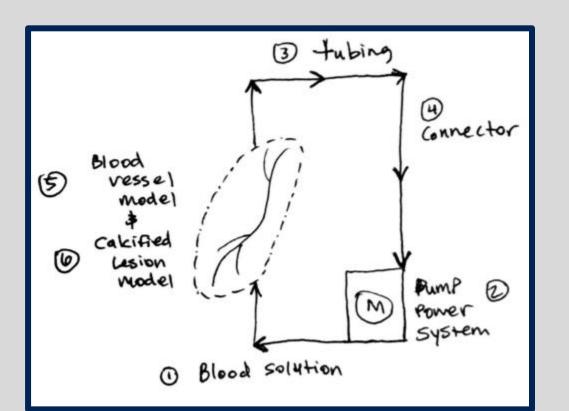
Applying fluid mechanic principles to blood flow in a blood vessel, we can determine appropriate wall thickness of our model.

Considerations:

- Assume laminar flow
- Viscosity of blood (μ) is never fixed
- Shear rate (du/dy) and flow velocity (V)_{max} will need to be calculated as well
- Radius (R)

Calculation:

(V) _{max} = 0.3 m/s (R) = 0.005 m	*typical of a medium-sized artery @ resting conditions *reasonable approximation for common
(μ) = 0.0035 Pa*s	*common dynamic viscosity value for blood
1. Calculate Shear Rat	te:
du/dy = [2(V)	_{max}]/(R)
du/dy = [2(0.3	3 m/s)] / (0.005m)
du/dy = 120 1	L/s
2. Calculate Wall Shea	ar Stress (WSS):
$\tau = (\mu)(du/dy)$,
τ = (0.0035 Pa	a*s) (120 1/s)
τ = 0.42 Pa	


4.1 Functional Decomposition

System:

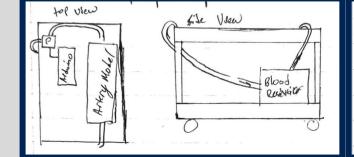
Calcified Lesion Vessel Simulation Model

Components:

- 1. Blood Substitute simulates blood
- 2. Power/Pump System produces flow
- 3. Tubing *directs flow*
- 4. Connectors connects system
- 5. Blood Vessel Model simulates femoral artery
- 6. Calcified Lesion Model *simulates calcification*

Hierarchy:

- Power/Pump System >Arduino Kit >>Circuitry >Motor >Pulsatile pump >Tubing >Connector >Reservoir
- Calcified Lesion Vessel


 >Blood Vessel Model
 >Femoral artery
 >Calcified Lesion
 Model

top seen

4.2 Concept Generation

YOP VICU

Concepts

Computing and pump on top

+ easy access to the computing and pump systems

Advantages/ Disadvantages

es + pump at same level as model

> If failure occurs near pump fluid could get into electronics

Computing and pump on bottom

Side View

blockeste

+ only the artery model is showing

Middle Sleft

- -If failure occurs at tank or pump fluid can get on electronics
- Pump might not create enough work to get water to the model

Computing and pump undermounted

file New

Respirat

~ FZWMO

- + only artery model is showing
- + electronics are out of the danger zone if failure occurs

-Accessing the electronics and pump system is more difficult

4.2 Concept Generation

Calcified Lesion Material	High-hardness FDM filament	Fired ceramic	Machined steel (1045)
	polymoker , , , , , , , , , , , , , , , , , , ,		
Advantages/ Disadvantages	+ Accurate and consistent hardness	+ Most accurate material properties	+ Consistent hardness
	+ High resolution	+ Easy to manufacture	+ High resolution
	+ Complete control of manufacturing process	+ Relatively inexpensive	 Complex manufacturing process
	 Relatively expensive 	 Inconsistent hardness 	- Relatively low hardness
		 Low resolution 	

4.2 Concept Generation

Calcified Lesion Adhesion	Adhesive paste	Interlocking mechanism	Embedded
Method			
Advantages/ Disadvantages	+ Simple manufacturing	+ Simple manufacturing and assembly	+ Simple manufacturing
	+ Complete control over adhesion strength	+ Complete control over adhesion strength	+ No protruding geometries
	+ Accurate to real-world use conditions	 Unidirectional adhesion strength 	 Inaccurate to real-world use conditions
	+ No protruding geometries	 Protruding geometries 	 No control over adhesion strength
	 Complex assembly 	 Low resolution 	- Complex assembly

Concept Generation: Blood Solution

Material

Advantages/ Disadvantages

Glycerin

+Transparent +Non-biological materials

+No mixing of creating ourselves

-More expensive to buy

+/- Has safety procedure for use

Simulated Blood

+Very similar to blood viscosity and flow

-Not transparent

+Cheaper option to purchase

-Has no safety procedures

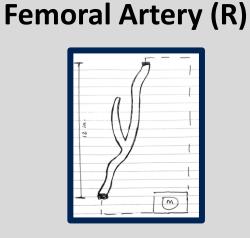
-Limited spec sheet

Corn Syrup, Water and Flour Mixture

+Can change the viscosity and flow characteristics

-May contain biological materials

+Cheapest option

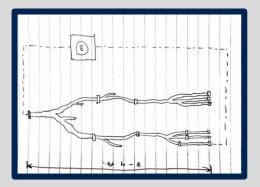

+No safety procedure for testing needed

-Must be mixed ourselves leaving room for inconsistencies

-May harden if left too long

4.2 Concept Generation

Vessel Design Structure

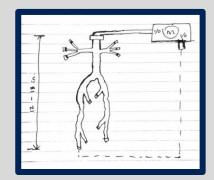

Advantages/ Disadvantages

(+/-) Only the right femoral artery in the system

(+) A common vessel site for the occurrence of calcification

(+) With a reduced fluid volume to manage, the system requires less power

Lower Extremity



(+) Explore the lower extremity arterial system

(+) Interconnection points for removing and adding vessels

(-) More fluid volume can lead to complications in pump power system

Femoral Artery

(+) Less fluid volume

(+) Less power required to pump

(+) L/R femoral artery

(+/-) Only the femoral artery in the system

4.2 Concept Generation

Material

Vinyl Tubing (PVC)

Advantages/ Disadvantages (-) Dimensions are general and are limited in thickness size to 3.2mm

- (-) Only sold in 50 ft rolls
- (+) Clear and transparent

(-) Adhesion compatibility unknown

3D Printing Filament

(+) Design intentions can be met more accurately

- (+) Hardness: Shore D 76
- (-) Will require a 3D printer or 3D printer services

(+) Good adhesion compatibility

Silicone Tubing

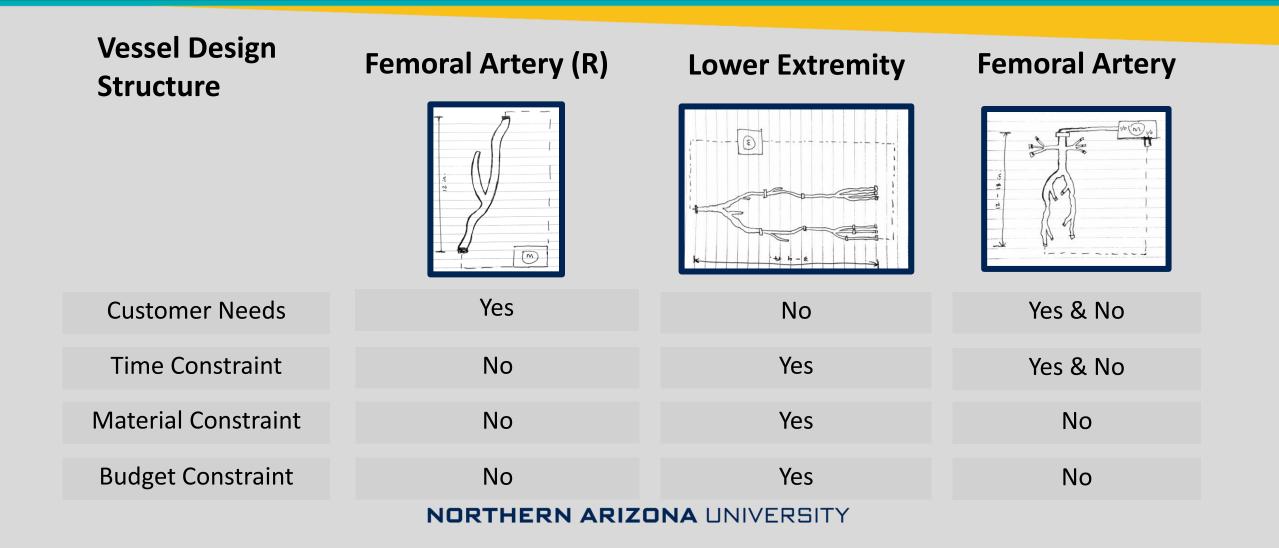
(+) exceptional pump life for peristaltic pumps

(+) Hardness: Shore A 50; soft material but durable

(+) sold in various sizes and reasonably priced

(-) Not exactly transparent

4.3 Selection Criteria


Mechanical Properties of Arterial Calcified Lesions

- Indentation Hardness: 274.8 ± 18.1 HV
 - <u>https://doi.org/10.1177/1758736014520809</u>
- Overlap Adhesive Strength: 15.2 ± 3.6 MPa
 - <u>https://doi.org/10.2319/020807-60</u>
- Scientific studies on mechanical properties of arterial calcified lesions are inapplicable to this project
- Properties are estimated from studies on enamel/dentin, a similar biological mineral
- Exact values are worst-case-scenario maximum values within the realm of possibility

Unit Conversions

- Actual calcified lesions
 HV 274 → Shore 39D
- High-hardness FDM filament
 Shore 90A → Shore 39D
- Fired ceramic
 Mohs 4 → Shore 44D
- Machined steel (1045)
 HB 215 → Shore 33D
- Hardness conversions provided by:
 - <u>https://plantech.com</u>
 - <u>https://www.efunda.com</u>
 - <u>https://www.carbidepot.com</u>

4.3 Selection Criteria

4.3 Selection Criteria

Concepts

Advantages/

Disadvantages

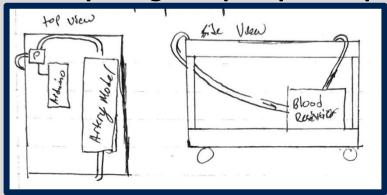
3D-printed Peristaltic Pump

+ allows for full
customization of pump
power and flow rate
- Will take several hours of
development to create a

pump that will meet engineering requirements

Peristaltic Pump

+easy to procure, and meets the flow rate requirement
-might need a higher power output to overcome friction loss in pipes

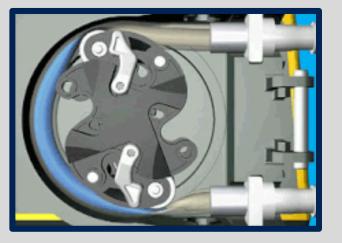

+ perfect for poof of concept in prototyping

Our decision:

The 3D printable pump would take several modifications to achieve the desired flow rate, therefore a pump that can achieve the flow rate will be purchased for prototyping. If after testing occurs, this pump needs to be changed to better fit engineering requirements, we can do so.

Top level design:

Computing and pump on top


- Keeps computing unit and electronics out of the areas where fluid would rest if failure occurs
- Placing the pump atop the cart reduces the overall head in the system

Pump selection:

Peristaltic pump

- Pumps fluid without it contacting any machinery
- Precise flow rate is achievable through correct motor control

A peristaltic pump with integrated RPM control was chosen to reduce the complication of motor control.

Table – Calcified Lesion Material Concept Selection

Material	High-hardness FDM filament	Fired ceramic	Machined steel (1045)
<u>Target</u>	polymaker		
Hardness: Shore 39D	Shore 39D	Shore 44D	Shore 33D
Resolution: <0.01 mm	0.1 mm	1 mm	0.01 mm
Cost: \$0.00	\$40/kg + manufacturing	\$7/kg + manufacturing	\$14/kg + manufacturing

High-hardness FDM filament was chosen as lesion material due to its replicability, accurate modeling of simulated use conditions, high resolution, and desirable lesion properties (see design requirements).

Table – Calcified Lesion Adhesion Method Concept Generation

Adhesion Method	Adhesive paste	Interlocking mechanism	Embedded
		There	
<u>Target</u>			
Adhesion Strength: 15 MPa	~15 MPa	~15 MPa	Yield strength of vessel model
Dimensions: 0 mm	0 mm	1 mm	0 mm
Cost: \$0.00	\$0.40/mL	~\$0.00	~\$0.00

Adhesive paste was chosen as adhesion method due to its accurate modeling of simulated use conditions, lack of protruding geometries, and desirable adhesion strength (see design requirements).

Initial Selection

Specifications (CAD):

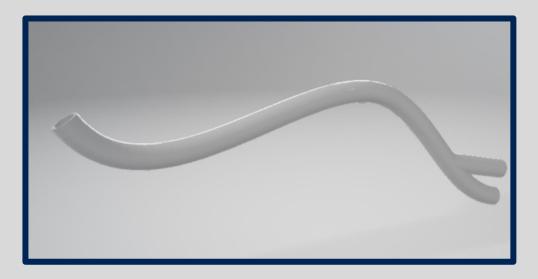
- Density = 0.04 lbs/in.³
- Mass = 0.03 lbs
- Volume = 0.74 in.³
- Surface Area = 37.74 in.²

Comparison:

- Best at meeting customer needs
- Most cost effective
- Least at generating waste
- Best at avoiding constraints

Femoral Artery (Right)

Final Selection


Specifications (CAD):

- Density = 0.04 lbs/in.³
- Mass = 0.038 lbs
- Volume = 0.67 in.³
- Surface Area = 33.54 in.²

Comparison:

- Exceptional at meeting customer needs
- Fair at cost per unit (12 units)
- More at generating waste
- Branch closer to inlet/outlet (meets CRs)

Femoral Artery (Right)

Initial Selection

Specifications

- PETG Filament; produces a clear product
- Diameter = 1.75 mm (common)
- \$24.99/kg
- Hydrophobic (moisture-resistant)
- Strong adhesion factors
- Print temperature = 230 260 °C
- Tensile at yield = 0.8 MPa

Comparison

- Adequate control of vessel dimensions
- Less waste involved
- Fair adhesion factors for lesion

Hatchbox Transparent Filament

Final Selection

Specifications

- Shore Hardness: 55A
- Ultimate Tensile Strength: 3.4 MPa
- Stress @ 50% Elongation: 0.9 MPa
- Stress @ 100% Elongation: 1.7 MPa
- Elongation @ Break: 160%
- Tear Strength: 12.3 kN/m

Comparison:

- More control of vessel dimensions
- More waste involved
- Better adhesion factors for lesion
- Resin printer required
- Exceptional material for medical models
- \$199.00 per Liter

NORTHERN ARIZONA UNIVERSITY

Elastic 50A Resin V2

Blood Analog

Glycerin: Final Design Blood Analog


Density: 1.26 g/mL Cost: \$60 Viscosity: 934 cP

Final Design:

- Quantity with limited error in manufacturing
- Procedure for testing
- Much closer to blood specifications
- Available in desired quantity for reasonable price

Corn syrup Solution: Prototype Blood Analog

Density: 1.37 g/mL Cost: \$10 Viscosity: Similar, but depends on composition

Prototyping:

- Cost effective
- Simple to make
- Extreme case of blood thickness
- Limited mess/procedure for use

Note					Sep 2, 2024	Sep 9, 2024	Sep 16, 2024	4 Se	Sep 23, 2024	Sep 30, 2024	.24	Oct 7, 2024		Oct 14, 2024	Oc	Dct 21, 2024	Oct 28, 2024	Nov 4, 2024	4 Nov 11, 3	, 2024	Nov 18, 202	.24 1	Nov 25, 2024	Dec 2, 2024	4 Dec 9, 2024	12 14 15 el	35
National of the second of th	TASK ASSIGNED TO	PROGRES	SS START	END	2 3 4 5 6 7 8 M T W T F S S	9 10 11 12 13 14 15 M T W T F S	4 16 17 18 19 20 7 S M T W T F	21 22 23 24 2 5 5 M T	25 26 27 28 29 7 W T F S S	30 1 2 3 4 M T W T F	5 6 7 B	9 10 11 17 T W T F	13 14 15 S S M 7	16 17 18 19 1 W T F /	20 21 22 23 S S M T	.4 24 25 26 27 W T F S	28 29 30 31 1 2 5 M T W T F 7	3 4 5 6 7 8 9 A 5 4 T 4 T F 5	10 11 12 13 14 S M T W	15 16 17 18 2 F S S V	19 20 21 22 4 T W T /	23 24 25 26 / S S M	27 28 29 30 F W T F 7	1 2 3 4 5 6 7 / 4 5 4 T W T F 7	4 9 10 11 12 13 (SM T W T 7		
	Research								1 1 1 1 .			(, , , ,					, , , , , , , , , , , , , , , , , , , ,										
 Name of a set of a se	Role Definition All	100%	9/2/24	9/5/24																							
 Network and a set of the set of the	Mathematical Model All	100%	9/11/24	9/16/24																							
	Benchmarking Scott and Gavir	n 100%	9/11/24	9/17/24																							
Jamie	Technical Roles All	100%	9/9/24	9/16/24																							
AreaAr	Literature Review All	100%	9/9/24	9/16/24																							
Note <t< th=""><th>Presentation - 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Presentation - 1																										
intintintintint0int <th>Schedule Jamie and Scot</th> <th>/tt 100%</th> <th>9/16/24</th> <th>9/18/24</th> <th></th> <th>P</th> <th></th>	Schedule Jamie and Scot	/tt 100%	9/16/24	9/18/24		P																					
Image: Point P	Budget Jamie	100%	9/13/24	9/17/24																							
Note: No	Slides All	100%	9/12/24	9/18/24																							
HereHereHereHereHereRankerRan	QFD Gavin and Jame	es 100%	9/11/24	9/17/24																							
	Benchmarking Scott and Gavin	n 100%	9/15/24	9/17/24																							
Cat. AgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeAgeBateAgeAgeAgeCompositionAge<	Analysis & Report - 1																										
NetworkNe	Materials Research All	100%	9/18/24	9/23/24																							
Appr:A	Cost Analysis All	100%	9/22/24	9/26/24																							
Weak Power H No. No. <t< th=""><th>Integrating with Des All</th><th>100%</th><th>9/24/24</th><th>9/27/24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Integrating with Des All	100%	9/24/24	9/27/24																							
Postpiele Visite Visite <th>Report - 1 All</th> <th>100%</th> <th>10/11/24</th> <th>10/20/24</th> <th></th>	Report - 1 All	100%	10/11/24	10/20/24																							
Paratian JCNoteNoteNoteParatian JCNoteNoteParatian JCNote <tr< th=""><th>Website Check #1 All</th><th>100%</th><th>10/18/24</th><th>10/25/24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	Website Check #1 All	100%	10/18/24	10/25/24																							
Engent fieldNoteNoteNoteNoteGener fieldNoteNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNoteNoteNote fieldNote <th>Prototyping & Presentation - 2</th> <th></th>	Prototyping & Presentation - 2																										
Group General A9089044904Brow general A9089074Group General A9089074Textber Mark9089074Group General A9089074Group General A908Grou	Presentation - 2 Cor All	100%	9/30/24	10/9/24																							
Height gill C-X10010101010Regular B-M1001010Regular B-M1001010Galfer B-M1001010	Enigneering Calcula All	100%	10/4/24	10/8/24																							
Acceptual Beilgy All Allow	Concept Generation All	100%	10/4/24	10/8/24																							
Tratters A 0000 01000 01000 Game Fractures A 0000 01000 0																											
A due freedex (f. Normality of the second	Conceptual Design All																										
A Rev PocceA 10001012410130Opine Doc yooA 0000A 1020A 2020CAD Doc yooSon X A 1000A 1000Too goo xooA 1000A 1000Too goo xooX X A 1000Too xooX X X A 1000Too xooX X X X X X X X X X X X X X X X X X X	Test Ideas All	100%	10/11/24	10/16/24																							
Optime Design Al Optime Design Al Optime Design Al CAD Design Al And State Note Al Note Al Procedee Design Al And State Note Al Note Al Procedee Design Al And State Note Al Note Al Procedee Design Al And Al Note Al Note Al Procedee Design Al And Al Note Al Note Al Procedee Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Procedee Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Note Alexandre Design Al And Al Note Al Note Al Note Alexandre Al Note Al Note Al Note Alexandre Design Al Note Al Note Al Note Alexandre Design Al Note Al Note Al Note Alexandre Design Al Note Al Note Al <th>Gather Feedback (E All</th> <th>100%</th> <th>10/12/24</th> <th>10/18/24</th> <th></th>	Gather Feedback (E All	100%	10/12/24	10/18/24																							
AD Designing Genara Scan 10142 110244 Proctoge-1D Prov 1000 10243 10104 Proctoge-1D Prov 1000 10124 10124	Refine Process All			10/19/24																							
Protogoe ID Pril Jame 1001 1024 1010 Prosentation 3 Al 1005 10245 1040 Prosentation 3 Al 1005 10245 10404 Prosentation 3 Al 1005 11424 11404 Prosentation 3 Al 1005 11424 11424 Prosentation 3 Al 11424 11424 11424 Prosentation 3 Alman 11424 11424 11424 Prosentation 3 Alman 114244 11424 11424 Prosentation 3 114244 11424 11424 11424 Prosentation 4 114244 11424 11424<																											
Final Deliverables Prescritation - 3 A 100% 1028/2 108/2 1																											
Presentation - 3I100%1028241024FMEAAl100%1028241024The Produgee Derror100%111424111224Individual AnalysisAl1117324111224Report - 2Al100%1117824112724Final Ado- Vessel Scott100%11252412324Final Ado- Lesion Lawin11252412324Alton Lawing11252412324That Ado- Lesion Lawing11252412324That Ado- Lawing11252412324That Ado- Lawing <th< th=""><th></th><th>100%</th><th>10/24/24</th><th>11/10/24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		100%	10/24/24	11/10/24																							
AI 1098 10282 10282 Is Protoge Demo 1098 11/424 11/324 Individual Analysis 1008 11/324 11/324 Report - 2 AI 1098 11/324 11/324 Final Rohome 1098 11/324 11/324 Final Rohome 1098 11/324 11/324 Final Rohome 1098 11/324 12/324 To Protoghe 1098 11/324 12/324					A																						
1st Prototype Dem J 100% 11/12/4 11/12/4 I dhi/dal Analyis J 100% 11/12/4 11/12/4 Report 2 Al 100% 11/12/4 11/12/4 Final BOM Jaime 100% 11/22/4 12/12/4 Final CAD - Lesion C 100% 11/22/4 12/12/4 And Prototype Dem J 100% 11/22/4 12/12/4 Final CAD - Lesion C 100% 11/22/4 12/12/4 And Prototype Dem J 100% 11/22/4 12/12/4																											
Individual Analysis Ar 100% 11/1324 11/1224 Report 2 Al 100% 11/1264 11/2744 Final BOM Jaime 100% 11/2524 12/274 Final CAD - Vessel Scott 100% 11/2524 12/374 Final CAD - Lesion Lesion 100% 11/2524 12/374 Other Potodype True 10% 11/2524 12/374			_																								
Report - 2Al100%11/182411/2724Final BOMJaime100%11/252412/324Final CAD - VesselScott100%11/252412/324Final CAD - Lesion I savin100%11/252412/324Or Potodype Text100%11/252412/324																		+				_++++ '					
Final BOMJaime100%11/25/212/3/2Final CAD - VesselSouth11/25/212/3/2Final CAD - Lesion L Gavin100%11/25/212/3/2And Protodype Lew100%11/25/212/4/2																											
Final CAD - Vessel Scott 100% 11/23/4 12/3/4 Final CAD - Lesion Gavin 100% 11/23/4 12/3/4 And Prototype Demr. All 100% 11/25/4 12/4/4																											
Final CAD - Lesion I Gavin 100% 11/25/24 12/3/24 Znd Prototype Demr All 10% 11/25/24 12/4/24																					<u> </u> '						
2rnd Protoclype Demr. All 100% 11/25/24 12/4/24																					'						
Website Check #2 All 100% 12/2/24 12/7/24					-																						
	Website Check #2 All	100%	12/2/24	12/7/24																							

Gore Calcified Vessel Team – Gantt Chart Fall Semester 2024

l				Jan 13, 2025	Jan 20, 2025	Jan 27, 2025	Feb 3, 2025	Feb 10, 2025	Feb 17, 2025	Feb 24, 2025	Mar 3, 2025	Mar 10, 2025	Mar 17, 2025	Mar 24, 2025	Mar 31, 2025	Apr 7, 2025	Apr 14, 2025	Apr 21, 2025	Apr 28, 2025	36
TASK ASSIGNED TO	PROGRESS	START	END			27 28 29 30 31 1 2 N T W T F S S														
Kickoff 486C Capstone																				
Kickoff Meeting All	100%	1/13/25	1/15/25																	
Project Management All	100%	1/14/25	1/17/25																	
Eng. Model Summary All	100%	1/17/25	1/23/25																	
Self-Learning/Indivdual Anat All	100%	1/17/25	1/30/25																	
Team/Staff Meetings All	100%	1/20/25	2/13/25																	
Hardware Statue Update #1 All	100%	1/16/25	2/13/25																	
HSU #1 - 3D Printing Vessel Jaime	100%	1/20/25	1/31/25																	
HSU #1 - Purchasing Materi Jaime	100%	1/14/25	1/20/25																	
HSU #1 - CAD Changes/Up Gavin & Soott	100%	1/13/25	1/19/25																	
HSU #1 - Assemble Parts/S; All	100%	1/16/25	2/13/25																	
HSU #1 - Instrumentation & James	100%	1/23/25	1/30/25																	
67% Hardware Built																				
Website Check #1 All	100%	2/14/25	2/27/25																	
Hardware Status Update #2 All	100%	2/27/25	3/6/25																	
HSU #2 - Prinintg Vessel/Le: Jamie	100%	2/14/25	2/26/25																	
HSU #2 - Purchasing Plan (1 All	100%	2/13/25	2/25/25																	
HSU #2 - Assemble (67%) All	100%	2/13/25	2/25/25																	
HSU #2 - Instrumentation & James	100%	2/18/25	2/25/25																	
Techinical Data Package Gavin & Scott	100%	2/13/25	2/25/25																	
Team/Staff Meetings All	100%	2/13/25	3/13/25																	
Spring Break (Team Reflecti All	100%	3/10/25	3/14/25																	
100% Hardware Built																				
Initiate Testing Plan All	100%	2/28/25	3/10/25																	
UGRADs Registration All	100%	3/1/25	3/6/25																	
Finalize Testing Plan All	100%	3/10/25	3/21/25																	
Draft of Poster All	100%	3/14/25	3/28/25																	
Hardware Status Update #3 All	100%	3/3/25	3/25/25																	
HSU #3 - Final Resin Prints All	100%	3/3/25	3/25/25																	
HSU #3 - Assemble (100%) All	100%	3/7/25	3/25/25																	
HSU #3 - Instrumentation & James	100%	3/17/25	3/25/25																	
Initiate Testing Results All	100%	3/31/25	4/9/25																	
Final Poster & PPT All	100%	3/31/25	4/11/25																	
Final CAD Packet All	100%	4/4/25	4/13/25																	
Final Deliverables																				
Final Product Demo All	100%	4/12/25	4/16/25																	
Final Testing Results All	100%	4/14/25	4/16/25																	
Final Report All	80%	4/16/25	4/18/25																	
Final Website Check All	88%	4/17/25	4/19/25																	
	67%	4/27/25																		
Client Handoff All UGRADs Symposium All	75% 90%	4/30/25	5/2/25 4/25/25																	
GORE Presentation	20%	4023/25	4/20/25																	
Client Presentation All	BOCK	4/30/25	5/2/25																	
Ginn Presimutori Ar	0039	4030720	5/2125																	

Gore Calcified Vessel Team – Gantt Chart Spring Semester 2025

5.1 Schedule

Fall Semester 2024 Schedule

Presentation – 1 (Research)

- Literature Review
- Benchmarking
- QFD

Presentation – 2

- Concept Generation, Evaluation and Selection
- CAD Modeling

Design Report – 1 Presentation – 3 (Design Proposal) Prototyping Phase

Prototyping Demonstrations 1 and 2

Design Report – 2

Spring Semester 2025 Schedule

Hardware Status Update - 1

- 33% build
- 85% purchased

Hardware Status Update - 2

- 67% build
- 100 % purchased

Hardware Status Update – 3

• 100 % build

Final Testing Final Product Demonstration Final Design Report Gore Presentation

5.2 Budget

													_				
Item	Quantity	Pr	ice/Per	Tot	al	Purchased/Ma	ı Vendor	Lead Time	One way inlet valve		6\$	10.91	\$	10.91	Purchased	Amazon	1 Week
Pump		1 \$	28.43	\$	28.43	Purchased	Amazon	3 Days	One way inlet valve		5 \$	20.73	\$	20.73	Purchased	Amazon	1 Week
Variable Power Supply		1 \$	54.03	\$	54.03	Purchased	Amazon	3 Days	Platform for cart		1 \$	10.00	\$	10.00	Purchased	Amazon	1 Week
85A Filament		1 \$	56.15	\$	56.15	Purchased	Amazon	3 Days	Electronics Housing		1	\$10		\$10	Manufacturing	g In House	2 Weeks
SainSmart TPU		1 \$	53.78	\$	53.78	Purchased	Amazon	3 Days	Force Gauge		1 \$	36.98			Purcahsed	Amazon	2 Days
Tubing		2 \$	7.63	\$	15.26	Purchased	Home Depot	1 Day	Durometer		1 \$	29.99			Purcahsed	Amazon	2 Days
Cart/Platform		1 \$	94.50	\$	94.50	Purchased	Harbor Freight	t 1 Day	Cleaning supplies		1 \$	30.00			Purchased	Walmart	1 Day
Tank		1 \$	46.39	\$	46.39	Purchased	PetSmart	1 Day	4PCS Breadboards Kit 2PCS		1 \$	12.32			Purcahsed	Amazon	2 Days
Arduino		1 \$	45.00	\$	45.00	Purchased	Amazon	2 Weeks	Hosyond 3pcs I2C LCD Display		1 \$	7.56			Purcahsed	Amazon	2 Days
Lession Adhesive		2 \$	5.19	\$	10.37	Purchased	Amazon	3 Days	ELEGOO 120pcs Dupont Wire		1 \$	3.41			Purcahsed	Amazon	2 Days
One way Inlet		1 \$	9.86	\$	9.86	Purchased	Amazon	2 Weeks	Gikfun 9v Battery Holder ON/Off		1 \$	60.30			Purcahsed	Amazon	2 Days
Artery Stand		1 \$	16.38	\$	16.38	Manufactured	In House	1 Week	Filament		3 \$	20.00			Purcahsed	Amazon	2 Days
Blood Analog		1 \$	36.30	\$	36.30	Purchased	3B Scientific	3 Weeks	Tile Cock		1 \$	10.00			Purcahsed	Amazon	2 Days
Syringes		1 \$	16.37	\$			Amazon	2 Weeks	Screws		8 \$	2.00			Purcahsed	Amazon	2 Days
50A Resin		1 \$	200.00	\$			Amazon	2 Weeks	Towels Funnel		2 \$ 1 \$	20.00 12.00			Purcahsed Purcahsed	Walmart Walmart	1 Day 1 Day
Pressure Transducer		1 \$	275.75	\$			Utah Medical	3 Weeks	Wash and Cure Station		1 \$	86.79			Purcansed	Amazon	1 Week
2pc Microcontroller		2 \$	20.62	+		Purchased	Amazon	2 Weeks	Isopropynol Alcohol		3 \$	22.12			Purcahsed	Walmart	1 Day
Flow Sensor		2 \$	10.36	\$		Purchased	Amazon	2 Weeks	Glycerin		1 \$	37.82			Purcahsed	Amazon	1 Week
55D TPE Filament		1 \$	25.99	\$			Amazon	2 Weeks	Leur Connectors		5 \$	13.12			Purchased	Amazon	2 Days
40D TPU		1 \$				Purchased	Amazon	3 Weeks	Peristaltic Pump		1 \$	53.28			Purcahsed	Amazon	1 Week
Vessels		12	-	Ŧ	-	Manufactured		On going	Gloves		30 \$	1.02	\$	30.54	Purcahsed	Amazon	1 Week
LCD Screen		1 \$	11.99	\$	11 99	Purchased	Amazon	1 Week	Calippers		1 \$	21.92	\$	21.92	Purcahsed	Amazon	2 Days
Dupont Wire		1 \$	6.98			Purchased	Amazon	1 Week	Miscellaneous parts	-	\$	11.00	\$	11.00	Purcahsed	All over	-
Battery Holder		2 \$	8.28	\$		Purchased	Amazon	1 Week									
Breadboards		1 \$	8.79	\$		Purchased	Amazon	1 Week	Client Budget	\$	3,000	00					
AnyCubic Photon Mono 5S Pro		2 \$	102.00	\$		Purchased	Amazon	1 Week	Ottent Duuget	Ψ	5,000	.00					
Arduinos		4 \$	16.99	\$		Purchased	Amazon	1 Week	Fundraiaina		¢.	200					
Elastic 50A Resin V2		5 \$	217.17			Purchased	FormLabs	2 Weeks	Fundraising		ф	300					
Super FLex Resin		2 \$	54.67	\$		Purchased	Amazon	1 Week		+							
Hose Fittings 1/4"		6 \$	2.91	\$			Amazon	1 Week	Total	\$	3,800	.00					
Hose Fittings 3/16" to 1/4"		10 \$		\$		Purchased	Amazon	1 Week		7	-,		-				
Hose Fittings 3/16"		10 \$	1.05	\$		Purchased	Amazon	1 Week	Remaining	\$	441	16					
Blood Analog		1 \$				Purchased	Amazon	1 Week	Remaining	Ψ	441	.10					
Brood Analog		Ψ	50.51	Ψ	50.51	i urchascu	Anazon	TAACCK									

5.3 Bill of Materials (BOM)

Item	Quantity	Price/Per	Total	Purchased/Manufactured	Vendor	Lead Time
Artery Stand	12	\$ 1.37	\$ 16.38	Manufactured	In House	1 Week
Blood Analog	2	\$ 18.15	\$ 36.30	Purchased/Manufactured	3B Scientific	3 Weeks
Vessels	12	-	-	Manufactured	In House	1 Week
Platform for cart	1	\$ 10.00	\$ 10.00	Purchased/Manufactured	Amazon	1 Week
Electronics Housing	1	\$10	\$10	Manufacturing	In House	2 Weeks
Electronics System	1	-	-	Manufactured	In House	3 Weeks
Tubing System	1	-	-	Manufactured	In House	1 Week
Pressure Transducer Wiring	2	-	-	Manufactured	In House	1 Week
More vessel Designs	2	-	-	Manufacturing	In House	2 Weeks
Housing Updates	1	-	-	Manufacturing	In House	2 Weeks
Additional stands	1	-	-	Manufacturing	In House	2 Weeks

For one unit: each of these would need to be included

6.1 Failure Modes

Connector Decoupling:

- Happens when pressure exceeds operating limits in the system
- Potential causes clogged tubing, closed outlet valve, or too high of a flow rate.
- Mitigation includes a correct and detailed operation manual along with ensuring the outlet valve is open before use.

Vessel Rupture

- Caused by 3D print defects in vessel
- Potential causes Stent balloon inflation pressure, similar pressure accumulation to the connector issue
- Mitigation includes visual inspection of each vessel before installing into the system as well as same precautions for previous failure mode

6.2 Initial Prototyping

Lesion/Vessel Model Prototype

Question:

- Do FDM-printed vessel models meet design requirements for wall thickness, diameter, surface quality, and flexibility?
- Can they form successful adhesive bonds to lesion models under simulated use conditions?

Answer:

- Vessel models printed with TPU filament have accurate dimensions and surface quality but are not as flexible or as watertight as real arteries.
- The adhesive bond was successful but had gaps in adhesion and weakened with water exposure.

Recommendation:

- Use SLA printing with flexible resin to meet design requirements.
- Use waterproof cyanoacrylate superglue optimized for plastic substrates, with high viscosity for gap-filling.

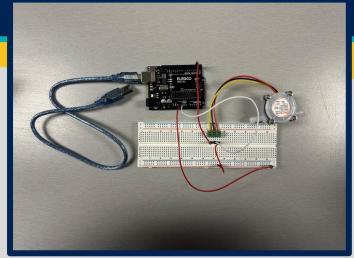
Adhesive Application Materials

Model of Lesion Adhered to Vessel

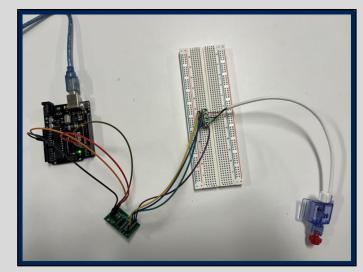
6.2 Initial Prototyping

Arduino and Sensor Prototype

Question:


• Will the chosen sensors be able to read accurate data from the system?

Answer:


• The Arduino computing module coupled with the sensors collected accurate and meaningful data from the system. One issue is this prototype requires a laptop to see the date

Recommendation:

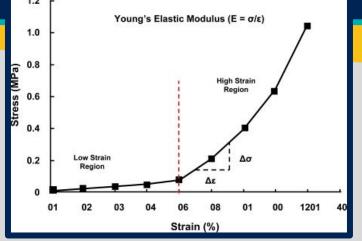
• Implement these sensors into the system with the addition of LCD displays to print the data to. This will remove the need for the data acquisition laptop.

Flow Sensor circuit

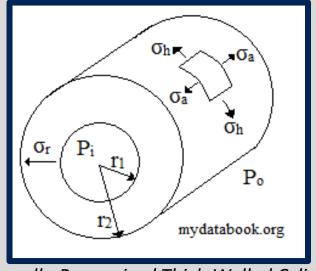
Pressure Transducer Circuit

6.3 Other Engineering Calculations

SLA Resin Material Properties


Hoop strain to restore unoccluded vessel area (50% degree of vessel occlusion):

$$\varepsilon_h = \frac{2\pi \cdot \Delta r_1}{2\pi \cdot r_1} = \frac{\Delta r_1}{r_1} = \frac{0.674 \ mm}{3 \ mm} \approx 0.225$$


• Maximum hoop stress of internally-pressurized thick-walled cylinder (external pressure is zero gauge):

$$\sigma_h = \frac{P_i(r_1^2 + r_2^2)}{r_2^2 - r_1^2} = \frac{P_i((3 mm)^2 + (4 mm)^2)}{(4 mm)^2 - (3 mm)^2} = 3.57P_i$$

- Elastic modulus of FormLabs Elastic 50A Resin V2: 1,800 kPa $E = \frac{\sigma_h}{\varepsilon_h} \rightarrow 1,800 \ kPa = \frac{3.57P_i}{0.225} \rightarrow P_i = 113 \ kPa$
- Elastic modulus falls within acceptable range of real artery elastic moduli of 1,500-6,500 kPa
- Internal pressure falls within operational limits of 24 kPa due to blood pressure and 1620 kPa due to maximum pressure of angioplasty balloons

Stress-Strain Curve of an Artery

Internally-Pressurized Thick-Walled Cylinder

6.3 Other Engineering Calculations

Volume of Filament:

Solid Volume =
$$\frac{d^2\pi L}{4} = \frac{8^2 * \pi * 12.4}{4} = 623.29 \, mm^3$$

Interior Volume =
$$\frac{d^2\pi L}{4} = \frac{6^2 * \pi * 12.4}{4} = 350.601 \, mm^3$$

Volume of Hollow model = *Solid Volume* – *Inner Volume* = $623.29 - 350.601 = 272.69 mm^3$ Length of Filament Required:

$$Yolume = Filament \ Length \ * \left(\frac{Filament \ Diameter}{2}\right)^2 * \pi$$
$$272.69 \ mm^3 = Filament \ Lenth \ * \left(\frac{1.75}{2}\right)^2 * \pi$$

Filament Length = 113.37 mm or 0.11337 m

NORTHERN ARIZONA UNIVERSITY

6.3 Other Engineering Calculations

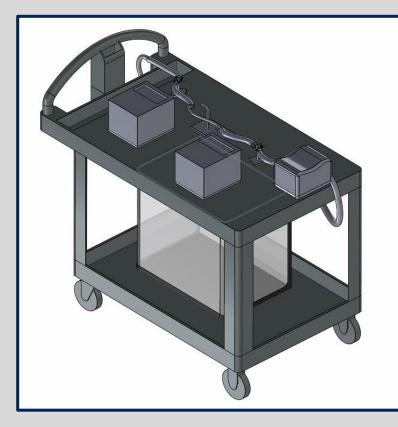
Yield Strength

The stress level where the blood vessel wall begins to deform plastically (no return).

- Mechanical Properties Femoral Artery
 - d = 7 to 8 mm (outer diameter)
 - r = 3.5 to 4 mm (radius)
 - p = 200 mmHg (w/ peripheral arterial disease)
 - t = 1 mm (wall thickness)

Yield strength of filament: 0.8 MPa = 800 kPa; We will design our vessel to not exceed the hoop stress value of 93.45kPa to ensure zero plastic deformation of the vessel.

Hoop Stress (Circumferential)


- p = internal pressure
 t = wall thickness
- . wali thicklies:
- r = inside radius
- $D_m =$ mean diameter
- σ = hoop stress

 $D_m = d - t = 8mm - 1mm = 7mm$

 $\sigma = p^* D_m / (2^* t)$ $\sigma = [(26.7 kPa)^* (0.007 m)] / (2^* 0.001 m)$

σ = 93,450 Pa or 93.45kPa (σ)_{axial} = 46,725 Pa or 46.73 kPa

7.1 Design Summary

Final CAD – Complete Assembly


Final Product – Complete Assembly

7.1 Design Summary

- A vessel model is SLA printed from FormLabs Elastic 50A Resin V2 is connected to plastic tubing to pressure transducers and flow sensor
- A lesion model is FDM printed from 90A TPU filament, and is adhered to a prepared surface inside the vessel model using 3M Scotch-Weld PR1500 cyanoacrylate adhesive
- Vessel is translucent to see the lesion model as well as device deployments
- Vessel is raised to a constant level with printed (PLA) stands
- Peristaltic pump delivers blood analog through the vessel for simulated use conditions

7.1 Design Summary

Pressure Transducer Circuit

- Two pressure transducers are connected to the system to monitor flow conditions
- An Arduino computing module and LCD screen are coupled to each sensor to show the user the data
- All the circuitry and electronics are housed within a box to avoid any water leaking onto them
- The sensors have been calibrated to ensure the user displays accurate data while operating

Pressure Transducer Display

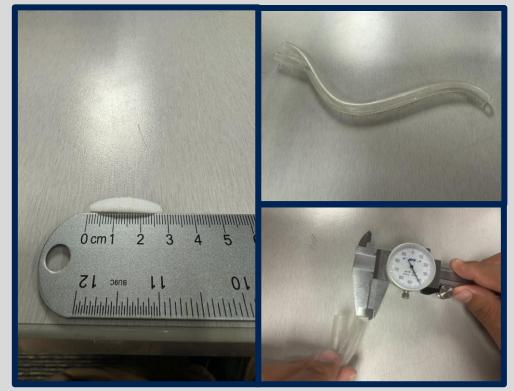
Top Level Testing

Experiment/Test	Relevant DRs	Testing Equipment Needed	Other Resources
EXP1 – Measurement Test	CR2 – Models Simulated Use Conditions	Caliper	Vessel & lesion model samples
	ER2 – Vessel Dimensions	Protractor	
	ER4 – Lesion Dimensions		
EXP2 – Hardness Test	CR2 – Models Simulated Use Conditions	Digital Durometer	Lesion model sample
	ER3 – Lesion Properties		
EXP3 – Adhesion Strength Test	CR2 – Models Simulated Use Conditions	Digital Force Gauge	Testing stand
	ER3 – Lesion Properties		Vessel & lesion model samples
			Adhesive
EXP4 – Fluid Flow Rate Test	CR2 – Models Simulated Use Conditions	Stopwatch	Pump and flow rate sensor
	ER5 – Fluid Properties	Graduated cylinder	
EXP5 – Fluid Pressure Test	CR2 – Models Simulated Use Conditions	Pressure Transducer	Vessel model
	ER1– Vessel Properties	Blood Pressure Kit	
		(Balloon, analog gauge)	

Top Level Testing

Experiment/Test	Relevant DRs	Testing Equipment Needed	Other Resources	
EXP6 – Fluid Viscosity Test	CR2 – Models Simulated Use Conditions	Meterstick	Ball	
	ER5 – Fluid Properties	High speed camera	Testing fluid	
		Stopwatch		
		Scale		
		Graduated cylinder		
EXP7 – Additive Manufacturing Test	CR1 – Replicability	Resin 3D printer	Possibly another model printer	
EXP8 – Visual Inspection Test	CR3 – Non-Biological Materials	N/A	N/A	
	CR4 – OSHA/ANSI Compliant			
	CR5 – Visualization of Deployment			
	ER6 – Engineering Standard Compliant			
	ER7 – Manufacturing Cost			
EXP9 – Product Demonstration Test	CR6 – Durability	N/A	Power supply	
	CR7 – Ergonomic for Intended Use		Fluid supply	
			Testing room	

Measurement Test


This test will answer whether the final product accurately models the dimensions of the vessel site and calcified lesions.

- CR2 Models Simulated Use Conditions
- ER2 Vessel Dimensions
- ER4 Lesion Dimensions

Equipment: caliper, ruler, and protractor Measurement: vessel and lesion dimensions

Testing Procedure:

A team member will use the dial caliper to measure length, wall thickness, and diameter of vessel model, and the length and thickness of the lesion model.

Measurement Testing

Lesion Measurement Test

Results:

Target:

3 cm length

3 mm thickness

50% occlusion

Actual:

2.8 cm length

3.3 mm thickness

45% occlusion

Vessel Measurement Test Results: Target: >20 cm length 1 mm wall thickness 8 mm diameter Actual: 21.2 cm length

1.04 mm wall thickness

7.81 mm diameter

- Testing the fluid flow properties within the system
- CR2 Simulates use conditions ER5 Fluid properties
- Graduated cylinder and stopwatch for flow rate
- Pre calibrated pressure gauge to validate fluid pressure

Flow Test Procedure

- Run the system and allow for flow to develop
- Aim the outlet into the graduated cylinder
- Time how long it takes to fill the cylinder
- Repeat 3 times and take average
- Divide the volume by the average tie to get the volumetric flow rate

Fluid Flow and Pressure Test Materials

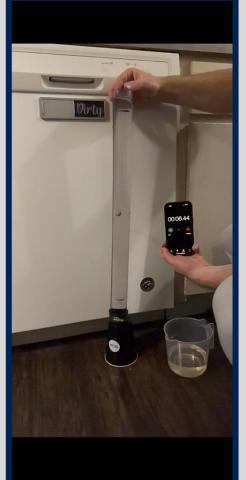
Pressure Test Procedure

- Connect the bulb to tubing leading to 3-way connector
- Connect pressure transducer to one other end and pressure gauge to the third end
- Use balloon to pressurize tubing and pressure transducer
- Record the gauge value and the transducer value
- Get a series of points at varying pressures
- Get calibration curve values and adjust code to match
- Test again at minimum 3 values to confirm calibrated

Testing Plans

Fluid Flow and Pressure Test Materials

Flow Rate Test Results: Target: 500 ml/min Actual: 483 ml/min


Pressure Test Results: Target: 180 mmHg Actual: 174 mmHg

Pressure Transducer 1

	analog (mmHg)	measured (mmHg)		
1	0	0.66		
2	100	98.4		
3	120	119.4		
4	140	139.1		
5	160	158.7		
6	180	178.5		
7	200	196.7		

Pressure Transducer 2

	analog (mmHg)	measured (mmHg)
1	0	1.55
2	100	99.8
3	120	119.2
4	140	139.27
5	160	158.3
6	180	177.86
7	200	198.7

Viscosity Test

Testing the fluid properties

- CR2 Simulates use conditions ER5 Fluid properties
- Ball drop test designed for the expected viscosity range

Materials:

- Tube full of the fluid
- Sphere to drop through the fluid
- Stopwatch to time the descent
- Slow-motion camera to assist in timing

Viscosity =
$$\frac{2(\rho_b - \rho_f)gr^2}{9n}$$

Results:

A mixture of 54% glycerin and 46% water yields a viscosity of 4.5 centipoise

Procedure:

- Mark 50 cm on the tube
- Determine density of the sphere and fluid
- Fill tube with the fluid
- Hold a stopwatch in view of the camera
- Drop the ball while filming with the slowmotion camera
- Analyze the video to get the most accurate time
- Repeat three times and take the average time
- Use the average time in the equation to the left to obtain the fluid viscosity

Hardness Test

Summary

• Use digital durometer to measure indentation hardness of lesion model

Procedure

 Press durometer probe into lesion model with 10 N of force, wait 1 second, record display value, repeat twice at different locations, calculate average hardness value

Results

- 91 Shore A measured
- 90 Shore A expected

Adhesion Strength Test

Summary

 Use digital force gauge, vessel and lesion models, and adhesive to measure overlap strength of adhesive bond

Procedure

 Apply adhesive to 5x5 mm square on model, press models together, allow to cure, attach force gauge, pull slowly until adhesive failure occurs, repeat twice, calculate average peak force value

Results

- 5.7 MPa measured
- 13.8 MPa expected

8.3 Finalized Specification

Customer Requirement	CR Met? (✓ or ✗)	Client Acceptable? (✓ or ✗)
CR1 – Replicability	✓ ✓	\checkmark
CR2 – Models Simulated Use Conditions	✓ ✓	\checkmark
CR3 – Non-Biological Materials	✓ ✓	\checkmark
CR4 – OSHA/ANSI Compliant	✓ ✓	\checkmark
CR5 – Visualization of Deployment	✓ ✓	\checkmark
CR6 – Durability		\checkmark
CR7 – Ergonomic for Intended Use		\checkmark

8.3 Finalized Specification

Engineering Requirement	Target	Tolerance	Measured/Calculated Value	ER Met? (✓ or 🗶)	Client Accceptable? (✓ or ✗)
ER1 – Vessel Properties	11-17 kPa pressure	zero	15.3 kPa	\checkmark	\checkmark
	>50% opacity	zero	79% opacity	\checkmark	\checkmark
ER2 – Vessel Dimensions	>20 cm length	zero	21.2 cm length	✓	✓
	1 mm wall thickness	±5%	1.04 mm wall thickness	1	1
	8 mm diameter	±5%	7.81 mm diameter	1	✓
ER3 – Lesion Properties	90HA durometer hardness	\pm 6HA	91HA	1	\checkmark
	15.2 MPa overlap adhesive	\pm 3.6 MPa	5.7 MPa	×	✓
	shear strength				
ER4 – Lesion Dimensions	3 cm length	±10%	2.8 cm	1	\checkmark
	3 mm thickness	±10%	3.3 mm	1	\checkmark
	50% vessel occlusion	±10%	45%	1	\checkmark
ER5 – Fluid Properties	500 mL/min flow rate	±5%	483 mL/min	1	\checkmark
	3.5-5.5 cP viscosity	±5%	4.48 cP	✓	✓
	180 mmHg pressure	±5%	174 mmHg	1	1
	1060 kg/m^3 density	±5%	1128 kg/m^3	×	✓
ER6 – Engineering Standard	100%	zero	100%	1	✓
Compliant					
ER7 – Manufacturing Cost	<\$3,800	zero	\$3,600	1	✓

James Anteau | 4/11/2025 | Gore Calcified Vessel Model | 59

8.3.1 Product Demo

9.1 Future Work

- Iterate upon the vessel design to model more complex designs
- Design and manufacture models of specific medical scenarios
- Streamline the electronics and display outputs into one circuit
- Iterate upon the blood model to achieve more accurate fluid properties while maintaining translucency
- Communicate with clients earlier and more frequently about vessel design and troubleshooting tools to effectively print complex geometries
- Next steps include handing the product over to client with instructions and all versions of model
- Present to Gore engineers to discuss process and the discoveries made within the project
- Practice the implementation of the devices and model

Thank You!

