Below the Knee Exoskeleton

Team: Ryan Oppel (Budget Lead), Alexandra Schell (Team Lead), Nicolas Watkins (Website and CAD Lead)

Project Description

Goal:

Improve upon the existing Exoskeleton design shifting from holding the battery and motor at the waist, to enclosing all components at the ankle. Our specific focus is:

- Battery selection
- Cover and ingress protection design
- Motor evaluation and mounting hardware design.

The current design has a large belt where the battery and microcontroller Are found, we need to take those components, update them, and put them Into the foot.

Our Client:

- Prof Zach Lerner, head of Biomechatronic Lab. They develop lightweight wearable robotic exoskeletons to improve the movement of people with walking impairment.
- W.L. Gore

Project Description: Black Box Model

Project Description: Physical Decomposition

Concept Generation

Calculations

Gear Ratio and Stress at the Motor

Gear Ratio

$$T_{\text{output}} = T_{\text{input}} \times \text{Gear Ratio}$$

If torque output is labeled as the torque needed at the ankle and torque input is measured at the motor, both calculations were solved in the previous presentation. Input was calculated at 3.7 Nm due to the specs of the motor, and the output is 139 Nm. Due to these numbers, we can assume we need a gear ratio of 38:1.

With the above equations and the torque being 3.7 Nm and the radius of the shaft, as designed in Solidworks, being 3 mm, the stress is calculated at 8.74 E7 MPa

Solidworks Simulations

Simulation of motor mount:

- High likelihood of bumping into foreign objects.
- No water resistance or protection against debris
- High chance of stress and fracture

Von Mises stresses based on 15N

Life Cycle based on 15N after 1000000 cycles

Concept Evaluation

Old: EC-4pole

Nominal voltage	36 V
No load speed	16300 rpm
No load current	109 mA
Nominal speed	14900 rpm
Nominal torque (max. continuous torque)	43.7 mNm
Nominal current (max. continuous current)	2.16 A
Stall torque	612 mNm
Stall current	29.1 A
Max. efficiency	88 %

New: ECX Flat

Nominal voltage	24 V
No load speed	10600 rpm
No load current	179 mA
Nominal speed	8100 rpm
Nominal torque (max. continuous torque)	103 mNm
Nominal current (max. continuous current)	4.24 A
Stall torque	438 mNm
Stall current	51.6 A
Max. efficiency	89 %

Concept Evaluation

		1	2	3	4
High Center of Gravity	1	-	+	S	+
Heat Transfer to Skin	3	+	+	-	S
Heat Transfer to Electronics	4	+	-	+	-
Protection	5	-	-	+	+
Σ		1	-5	6	2

9

Concept Evaluation

		1	2	3	4
		3500mAh 10A Protected Lithium Ion	Dantona L148A26-4-18- 3WA3 Lithium-Ion Battery	Li-Ion 21700 Battery	2p3s 10.8v 6400Mah Lithium Battery Pack
		anna i a n'Arana ta an La catala da antara anna La catala da antara	Раск		
Output power	2	S	-	+	+
Weight and size	3	_	+	-	S
Ease of use	2	+	+	-	+
cost	2	+	-	+	-
TotalΣ		1	1	-1	2

CAD

Schedule

Overview of the first semester

Below is the tentative schedule of the first semester based on major deadlines.

2	Major Deadlines 1st Semester																				
WBS Number	Task Title	Task Owner	Start Date	End Date	Duration	% Done	1	2	3	4	5	6	7	8	9 1	10 1	11 1	12	13	14	15
2.2	Initial CAD Design	Nick W	9/30/24	10/28/24	28	16%															
2.1	1st Protype Demo	Alex S	10/28/24	11/13/24	15	0%															
2.2	Final CAD and BOM	Nick W	10/11/24	12/3/24	52	0%															
2.3	2nd Protype Demo	Alex S	10/11/24	12/4/24	53	0%															
2.4	Analysis of Prototype	Team	12/4/24	12/7/24	3	0%															
2.2	Purchase of Battery	Ryan O	10/11/24	10/26/24	15	0%															
2.3	Test 1st Prototype	Alex S	11/13/24	11/24/24	11	0%															

Budget

Fundraising

We officially have a GoFundMe account up and running and have advertised it to potential benefactors.

NAU Processing Fee = -\$20)0
Fundraising Contribution = <u>+\$40</u>	00
Total Budget = +\$42	00

Expenses:	
Tools & Prototyping:	
3_d printer Parts	\$500
Filament	\$50
Testing Material	\$400
Parts:	
Battery	\$1000
Cover	\$500
Hardware	\$500
Motor	\$1000 (maybe)
Total Expenses:	\$3950

13

Thank You!

Project Description

[1] "Compact Drives, Motors, Gears, Sensors | maxon group," *Maxongroup.us*, 2024. <u>https://www.maxongroup.us/maxon/view/product/motor/ecmotor/ecflat/ECXflat32/ECXA32LZF50E6ILACO1Y330A</u>

[2] "Online shop for high precise drive systems by maxon | maxon group," *Maxongroup.com*, 2017. <u>https://www.maxongroup.com/maxon/view/product/323217</u>