

DORIS

Dylan Boeholt, Andre Bonillas, Connor Davidson, Jeremy Malmo, and Michael Zielinski

Project Description

Statement:

• We will Develop a Utility Drone with Variable Payload Capacity

Description/Objective:

- Design a unique drone frame
- Engage and deploy different payloads, while remaining airborne
 - camera for potential surveying
 - One payload weighing 30% of total weight
 - MC-01F30 Cruise Missile (deployable)

• Drone must be able to return to user and deliver/retrieve a payload to/from a desired location/target

Sponsor/Client:

- Mechanical Engineering Department at Northern Arizona University
- Contact: Professor David Willy

Importance:

- Satisfies a need for a more affordable and easier to manufacture, payload capable drone
- Drone could be used to deliver and receive any kind of package (first aid & emergency supplies)
- Necessity for remote piloted drones that are durable, easy to fly, and can return to the user while performing tasks

Project Description: Updates

Prototyping:

- CAD Modeling
 - Frame brackets
 - Motor brackets
- Real-world modeling
- Manufacturing
 - Frame brackets
 - Cruise missile parts
- Material Selection
 - Frame material selection
 - Bracket material selection (TPU)

		Project:		DORIS Drone					
System QFD		Date:		11/6/2024					
Thrust : weight > 3:1									
Compact Design under 3'x3'x3'					3 Highest			st on scale	
Complete Course < 10 min	Engineering	3							
Payload > 30% of weight	Requirements	1		1	\searrow				
Time of flight > 10 min		3		1	1	\searrow			
Total Cost under \$3,000			3			1			
Meets FAA requirements (weight < 55 lbs)		3	3		1	3	3	\searrow	
			Тес	chnica	l Requ	iireme	nts		
Customer Needs	Customer Weights: 1-5	Thrust : weight > 3:1	Compact Design under 3'x3'x3'	Complete Course < 10 min	Payload > 30% of weight	Time of flight > 10 min	Total Cost under \$3,000	Meets FAA requirements (weight < 55 lbs)	
High mobility	4	5	5	5	1	2	1		
Small	1	4	5	3		5	5	5	
Complete Boeing Recon Mission	5	5	3	2	4	2			
Payload Capacity	5	5	1	2	5	1	2		5 highes
Battery Capacity for small mission	4	3	2	4	4	5	1	1	
Cost Efficiency	3	1	2	3		2	5	4	
Thrust Efficiency	4	5	3	5	4	5	2		
FAA Registered	5		3					5	
Technical Requirement Units			Feet	minutes	% weight	minutes	USD	spunod	
Technical Requirement Targets			< 3X3X3	< 10	> 30	> 10	>3000	< 55	
Absolute Tec	hnical Importance	28	24	24	9	52	16	15	
Relative Tec	hnical Importance		ო	ო	сı	4	g	2	

<u>Design</u> <u>Requirements - QFD</u>

Design Requirements – CRs/ERs

Customer Requirements

- High mobility
- Small
- Complete Boeing Recon Mission
- Payload Capacity
- Battery Capacity
- Cost Efficiency
- Thrust Efficiency
- FAA Registered

Engineering Requirements

- Thrust to weight ratio of at least 3:1
- Design under 36" x 36" x 36"
- Complete Course < 10 minutes
- Payload > 30% of drone weight
- Time of flight > 10 minutes
- Total Cost under \$3000
- Meets FAA requirements (weight < 55 lbs, flown under 400 ft AGL)

Design Description – CAD

Design Description – CAD Top Level Design

Design Description – Arm to Frame Mount

- Holds arms in place
- Acts as a separator for the frame plates
- Bolts in them hold the mounts and frames together

Design Description – Frame

- Main body parts for the drone
- Houses electronic components between the plates
- Bottom plate includes landing gear for the drone

Design Description – Arms

- Ensures motors are evenly spaced and supported
- Provides structure for flight
- Open tube design to allow wires to be fed through

Design Description – Motors and Motor

Mounts

Functions:

- Motor mounts secure the motors to the arms
- Motors drive propellers that give flight

Motor Type:

• Xing 4214 2-8s X Class FPV Motor

Design Description – Battery

Functions:

• Supplies power to drone

Battery Type:

 Tattu 6S 22000 mAh TAA22K6S30ASX Battery

Design Description – Electrical Network

Functions:

- Provide communication between pilot and flight controller
- Provide signal from flight controller to ESCs to respond to user inputs and environmental conditions
- Flight controller provides "brain" to drone removes workload from pilot
- ESCs delivers PWM signal to DC brushless motors and controls speed
- PDB/Power Module distributes power to ESCs/payload systems

Michael Zielinski // 11/6/2024 // DORIS // F24toSp25_13 // Slide 14

Design Description – Regular Payload System

- Bracket designed to capture 2 MagSwitch magnets and servo motor mounting
- Stand-offs will mount bracket to the drone frame (lower bracket) and servo to bracket
- Actuator wheel designed to attach to servo to actuate magnet (will be investigated)
- Magnets will attach to metal plate on a payload (will be decided on at a later date)
- Torque needed to actuate magnet is still be investigated

Design Description – Final CAD Design

Connor Davidson // 11/6/2024 // DORIS // F24toSp25_13 // Slide 16

Engineering Calculations – Magnet Analysis

1 Magnet vs. 2 Magnet System:

Pull off- Force reduction by applied Torque (only one magnet in center):

- Max Hold Force(F_H) = 60 lbs = 267 N
- Pull-off Force(F_P) = Max Hold Force; under ideal conditions
- $F_H = F_P = \frac{B^2 A}{2\mu_0};$
- L = 6in; r = 3in = 0.0762 m
- Torque $(\tau) = rFsin\theta$ and $F_{shear} = \frac{\tau}{r}$;
- Effective Pull-off force reduction: $F_{effective} = \sqrt{F_P^2 F_{shear}^2}$
- Assuming a drag/wind force applied perpendicularly to payload:
- $\tau = (0.0762)(1.84N)\sin(90) = ; r(magnet) = 0.0113m; F_{shear} = \frac{1.84}{0.0113m} = 163 N$
 - $F_{effective} = \sqrt{(267N)^2 (163N)^2} = 212 N$, 21% perecent reduction
 - 2 magnet system would greatly reduce this (assuming the payload is fixed in place by the 2 magnets
 - Torque would be approximately zero, making force reduction essentially zero

Design Validation – Electrical FMEA

Part	Potential Failure Mode	Potential Failure Effects	Mechanisms of Failure	Likelihood of Occurrence	Recommended Action
Flight Controller	Software Failure	Loss of control	Incorrect programming, firmware bug	Low	Ensure programming accurate before flight
Regular Payload Release	Servo Failure	Unreleasable/ Early released payload	Servo not strong enough, not receiving enough power	Moderate	Test all servos before flight, use factor of safety during selection
RC Communica tion (Missile and Drone)	Loss of signal	Loss of manual control	Loose connections, malfunctioning part	Low	Ensure all connections secure before flight, test on ground
Battery	Reduced Voltage	Reduced power	Aging, improper charging	Moderate	Ensure storage charge when not in use

Michael Zielinski // 11/6/2024 // DORIS // F24toSp25_13 // Slide 18

Design Validation – Regular Payload FMEA

Part	Potential Failure Mode	Potential Failure Effects	Mechanisms of Failure	Likelihood of Occurrence	Recommended Action
Mounting bracket	Cracking/ breaking	Loss of stability and alignment	Stress concentration, fatigue cracks, impact	medium	Use strong material, ensure sufficient load capacity
Actuator wheel	Misalignment	Poor fitment & vibration	itment & Uneven torque, part n ion wear		Ensure secure install, frequently check alignment
Stand-offs	Material fatigue & loosening	Loss of control of magnet, potential payload drop	Vibration, material fatigue	medium	Use strong material, verify secure install
Switched magnet (x2)	Misalignment & loss of force	Vibration loosening & exposure to high heat	Demagnetization & mechanical shock	low	Ensure magnet is fully engages, protect from heat & impact
Servo motors (x2)	Over heating, electrical failure	Reduced performance, loss of control	Excessive current draw, high load, over-voltage, short- circuit	medium	Ensure proper wiring, monitor cooling

Design Validation – Arm Bracket to Motor Mount FMEA

Part	Potential Failure Mode	Potential Failure Effects	Mechanism s of Failure	Likelihood of Occurrence	Recommended Action
Frame Arm Mount	Twisting/Defor mation of TPU mount	Unstable Flight	Part (TPU) infill density to low.	Not likely, TPU density is at 35%	Increase infill density.
Octagonal Carbon Fiber Arm	Carbon fiber critical failure.	Highly unstable flight/ inoperable drone	Cracked carbon fiber arm	Likely after testing.	Purchase extra carbon fiber tubes
Motor Mount	Twisting/Defor mation of TPU mount	Misaligned motors causing unstable flight	Part (TPU) infill density to low.	Unlikely, infill density will be rigid enough to counteract	Increase infill desnity

<u>Design Validation – Thrust Load Analysis:</u> <u>Dynamometer</u>

Constructing a dynamometer to measure the different efficiencies of different sized propellers under load.

Materials

- 10 kg Load Cell
- Mini Linear Rail
- 13 x 8 x 3 Blade Propeller
- 14 x 7 x 3 Blade Propeller
- 16 x 8 x 3 Blade Propeller
- 3-D printed Test Stand Frame
- Arduino

Experiment

• Test different propeller sizes and pitches to optimize drone thrust.

Jeremy Malmo // 11/6/2024 // DORIS // F24toSp25_13 // Slide 21

Design Validation – Testing Procedures

Engineering Requirement	Testing Procedure	Resources Needed
Thrust to weight ratio of at least 3:1	Attach motor to DIY dynamometer and measure different thrust forces from different propellers. Then divide the found thrust by weight.	Dynamometer
Design under 36"x36"x36"	Measure the length/width from tip of propellor on one corner to tip of propellor on adjacent corner	Tape measure
Complete Course < 10 minutes	Use cones to lay out a course for the drone to pickup/drop the payload, take photo of team, and launch cruise missile at a target	Stopwatch, cones, large sheet for target, open field (South Fields)
Payload > 30% of drone weight	Measure the drone weight and the payload weight then perform a simple calculation	Scale
Time of flight > 10 minutes	Hover the drone at a fixed position in the air until low battery warning goes off	Stopwatch, open field to test (South Fields)
Total Cost under \$3000	Track purchases on a budget sheet	Excel spreadsheet
Meets FAA requirements (weight < 55 lbs, flown under 400 ft in elevation)	Measure the drone weight using a scale; monitor the altitude in-flight	Scale, equipment to measure AGL in-flight

Schedule: ON TIME

Tasks	Week 11 (Nov 4 - Nov 10)	Week 12 (Nov 11 - Nov 17)	Week 13 (Nov 18 - Nov24)	Week 14 (Nov 25 - Dec 1)	Week 15 (Dec 2 - Dec 8)
Presentation 3					
P3 (Project Description)					
P3 (QFD)					
P3 (CAD)					
P3 (CAD Drawings)					
P3 (Electric Flow Chart)					
P3 (Engineering Calculations)					
P3 (Design Validation)					
P3 (Schedual)					
P3 (Budget)					
P3 (Conclucion)					
Presentation 3 - feedback to other teams					
Peer Eval 3					
Timecard Wk11					
1st Prototype Demo					
DAC meeting extra credit					
Timecard Wk 12					
Staff Meeting #9 (Wk13)					
HW04 - Individual Analysis					
Timecard Wk13					
Report #2					
Staff Meeting #10 (Wk14)					
Timecard Wk14					
Final CAD and Final BOM					
[Insert Sub Tasks for Final CAD and Final BOM here]					
2nd Prototype Demo					
[Insert Sub Tasks for 2nd Prototype Demo here]					
2nd Proto Demo - feedback to other teams					
E-fest Extra Credit					
Project Management for 486C					
Website Check #2					
(FINAL) Peer Eval 4					
Course Eval Extra Credit/Close					
Timecard Wk15					

Connor Davidson // 11/6/2024 // DORIS // F24toSp25_13 // Slide 23

<u>Budget</u>

Budget:	\$ 3,717.70	Amount of 10%:	\$ 717.70
Expense:	\$ 1,361.92	Left in CEIAS:	\$ 1,880.75
Remaining:	\$ 2,355.78	Left in donations:	\$ 475.03

Date	Vendor	Item	Quantity	Tracking Number	Cost	Status	Notes
10/17/24	Amazon	Octagonal carbon fiber tubing	1	LZ084689834CN	\$ 108.	9 <mark>Shipped</mark>	Capstone PO#2
		ApisQueen 120A ESC w/ BEC	4		\$ 213.	Delivered	
		SunLu TPU Filament Orange	1		\$ 26.	9 Delivered	
		XT90 Connectors (10pr)	1		\$ 13.	04 Delivered	
		12 Gauge wire kit	1		\$ 27.	08 Delivered	
	HQProp	Propellers	4		\$ 130.	2 Payment not complete	
10/22/24	AliExpress	HotRC controller/receiver for missile	1		\$-	Delivered	Michael Paid, GoFundMe funds (\$20.44)
11/4/24	Target	Gorilla glue for missile	1		\$-	Delivered	Michael Paid, GoFundMe funds (\$6.54)

Questions?

Thank you!

All // 11/6/2024 // DORIS // F24toSp25_13 // Slide 25