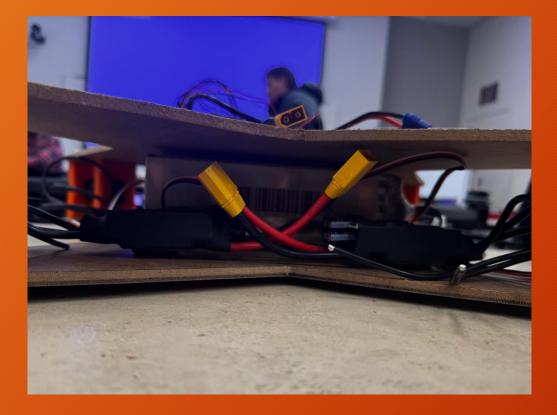
## DORIS: Prototype Demo #1

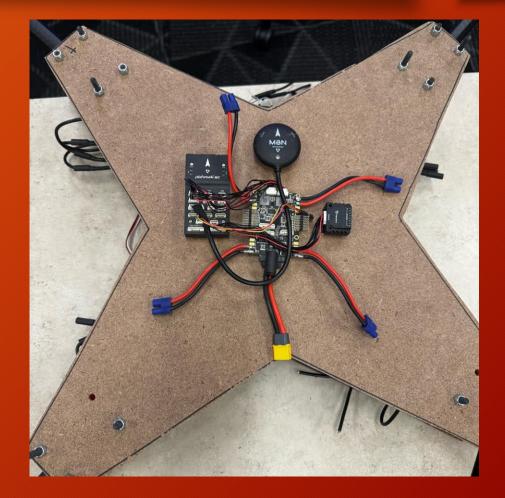
Dylan Boeholt, Andre Bonillas, Connor Davidson, Jeremy Malmo, Michael Zielinski

### Prototype #1: Drone Layout

**Question:** How will the drone parts and electronics practically fit together? How big will it be?

Methods: MDF cutting, FDM 3D printing with TPU


**Answer:** The drone will be approximately 44 inches across in current configuration, and approximately 15 lbs in total weight. The layout can be seen in the figure on the next slide.


### Moving forward:

- Carbon fiber frame plates can begin to be modeled with openings for integrated electronics
- More standardized bolts need to be purchased for arm brackets
- Arms can be analyzed for stability to determine if they need to be shorter
- Motor mounts will be further refined for manufacturability and needed parameters



## Prototype #1: Close-up Images





### Prototype #2: Cruise missile

**Question:** Can we achieve directional control via servos based on cruise missile design documents from AeroJTP?

**Methods:** FDM 3D printing w/ Lightweight PLA, wiring diagram of missile

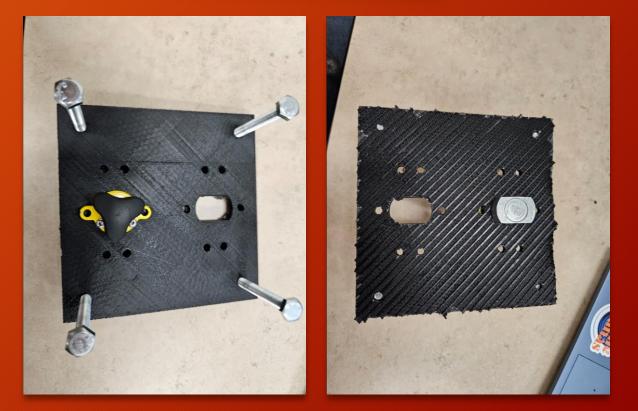
**Answer:** Left/right directional control can be achieved, with the tailerons achieving the designed 80 degree motion (+/- 40 degrees in either direction from neutral)

#### **Future work:**

- Integration of the control surfaces into the full cruise missile construction
- Construction of the fuselage
- Confirmation of cruise missile flight independent of the drone system
- Can vertical control be achieved with this design?



## Prototype #3: Payload Attachment


**Question:** How can the MagSwitch(es) be attached securely to the frame?

Methods: FDM 3D printing w/ ABS

**Answer:** Two MagSwitches can be attached via a press fit into a custom designed plate that can be suspended via bolts from the bottom of the drone. The bolts on the plate clear the footprint of the battery above it.

#### Future work:

- Possibly redesign the plate for 3 MagSwitches for optimum shear force abatement
- Use values from MagJig engineering team for turning force to determine servo motors needed
- Determine servo attachment and test control via flight controller



### Team Responsibilities

- Dylan:
  - Design and manufacturing of motor mounts
- Andre:
  - CAD modeling of servo attachment
  - Design and manufacturing of MagSwitch plate
- Connor:
  - CAD modeling of frame plates
  - Manufacturing of MDF frame plates
- Jeremy:
  - Design and manufacturing of arm mounts
  - Mounting hardware selection
- Michael:
  - Manufacturing and troubleshooting of cruise missile electronics/fuselage
  - Design of drone electronics layout (ESCs, Flight Controller, GPS, Power Module)
- All:
  - Final assembly

# Thank you!

Questions?