A N E U R Y S M R U P T U R E
T E A M F 2 4 T 0 S P 2 5 _ 0 2 A NEURYSM RUPTURE
TEAM F24TOSP25_02
ANNA MELLIN A N N A M E L L I N C A D E N A D A M S A M A N D A O R T I Z - V E L A Z Q U E Z

College of Engineering, Informatics, and Applied Sciences

P R O J E C T D E S C R I P T I O N
• Background:
• C Forms from a weakening of arterial walls

- - o Forms from a weakening of arterial walls
- **OJECT DESCRIPTION**

ackground:
 \circ Forms from a weakening of arterial walls
 \circ Pressure + weak walls = ballooning in the walls and
 \circ aneurysm rupture \circ Hemorrhagic stroke \circ

DEATH aneurysm formation
	-

DEATH

- **CT DESCRIPTION**

Ind:

Instrom a weakening of arterial walls

Sure + weak walls = ballooning in the walls and

Irysm formation

 Aneurysm rupture >> Hemorrhagic stroke >>
 DEATH

Foximately 500,000 people die each year • Approximately 500,000 people die each year from brain aneurysm ruptures **JECT DESCRIPTION**

ground:

Forestigner a weakening of arterial walls

Pressure + weak walls = ballooning in the walls and

aneurysm romation
 DEATH
 Approximately 500,000 epole die each year from brain

view:

Wew:

- Overview:
	- o Model an aneurysm rupture using various

QFD

Quality Function Deployment

U P D A T E D E N G I N E E R I N G R E Q U I R E M E N T S
DEL COMPLEXITY

• MODEL COMPLEXITY

High complexity desired Strong relationships with Patient Model and Cost considerations

• PREDICTION QUALITY

Rupture prediction is incredibly important for this project

• USER FRIENDLINESS

Essential to ensure ease of use and accessibility Influences cost and model complexity

• COST OF MATERIALS

Efforts to minimize material costs, balancing functionality with budget constraints Linked primarily to Cost and Low Labor Cleaning requirements

A Ortiz-Velazquez

C Adams

POSITIVE AND NEGATIVE MOL
Thickened Core
1. Loading st! file into MeshInspector or MeshMixer
2. Select entire body not including supports
3. Extrude body by 0.75mm
4. Repeat step 2 with supports and extrude by 0.2mm
5. S **POSITIVE AND NEGATIVE MOL**
Thickened Core
1. Loading stl file into MeshInspector or MeshMixer
2. Select entire body not including supports
3. Extrude body by 0.75mm
4. Repeat step 2 with supports and extrude by 0.2mm
5. S

Thickened Core

-
-
-
-
-

Negative Cast

- **POSITIVE AND NEGATIVE M**
Thickened Core
1. Loading stl file into MeshInspector or MeshMixer
2. Select entire body not including supports
3. Extrude body by 0.75mm
4. Repeat step 2 with supports and extrude by 0.2mm
5. Sav SolidWorks and create assembly
-
- **POSITIVE AND NEGATIVE MOL**

Thickened Core

1. Loading stl file into MeshInspector or MeshMixer

2. Select entire body not including supports

3. Extrude body by 0.75mm

4. Repeat step 2 with supports and extrude by 0.2mm **POSITIVE AND NEGATIVE MOI**
Thickened Core
1. Loading stl file into MeshInspector or MeshMixer
2. Select entire body not including supports
4. Repeat step 2 with supports and extrude by 0.2mm
5. Save as Stl file
Negative C part is immersed. Thickened Core

1. Loading stl file into MeshInspector or MeshMixer

2. Select entire body not including supports

3. Extrude body by 0.75mm

4. Repeat step 2 with supports and extrude by 0.2mm

5. Save as Stl file

Negati
- $"Features" >> "Cavity"$ and click on core
- - o If making an asymmetrical part, click on core and other negative part during repeated step 4.

C Adams

C Adams

ENGINEERING CALCULATIONS
FLUID ANALYSIS OF BLOOD MIMIC ENGINEERING CALCULATIONS
FLUID ANALYSIS OF BLOOD MIMIC
· Density= $\rho = \frac{m}{V} \approx 1060 \frac{kg}{m^3}$ **ENGINEERING CALCULATIONS**

FLUID ANALYSIS OF BLOOD MIMIC
 \cdot Density = $\rho = \frac{m}{\rho} \approx 1060 \frac{kg}{m^3}$
 \cdot Viscosity = $\mu = \frac{F_{4y}}{Ay} \approx 2.3 - 4.1 \cdot 10^{-3} mPa \cdot s$
 \cdot Shear rate = $\frac{u}{y}$
 \cdot Du Noüy Ring test (sur

- Density = $\rho = \frac{m}{V} \approx 1060 \frac{kg}{m^3}$
- Viscosity = $\mu = \frac{Fu}{Ay} \approx 2.3 4.1 \times 10^{-3} mPa \cdot s$
- Shear rate $=\frac{u}{y}$
-

E N G I N E E R I N G C A L C U L A T I O N S
Bartows Formula for Theoretical Burst Pressure **N G I N E E R I N G C A L C U L A T I O N S**
Barlows Formula for Theoretical Burst Pressure
 $P = (2+s*t)/D$
 $S =$ material tensile strength
 $s =$ material tensile strength
 $t =$ wall thickness
 $D =$ outside diameter
 $m m/bg =$ milli

Barlows Formula for Theoretical Burst Pressure

 $P = (2 * S * t) / D$

- P = Burst pressure
- S = material tensile strength
- t = wall thickness
- D = outside diameter

mm/hg = millimeters of mercury

- V E L O C I T Y DISTRIBUTION AND PROFILE
This calculation serves to find stagnation zones (areas of low velocity) and inflow jets (areas of high velocity) inside the aneurysm • This calculation serves to find stagnation zones (areas of low velocity) and inflow jets (areas of high velocity) inside the aneurysm.
	- Velocity is highest in the center and slows near vessel walls.

ELOGITY DISTRIBUTION AND PROFILE
\nThis calculation serves to find stagnation zones (areas of low velocity) and inflow jets (areas of high velocity) inside the aneurysm.
\n• Velocity is highest in the center and slows near vessel walls.
\n
$$
v(t) = v_{max}(1 - \frac{r^2}{R^2})
$$
\n
$$
v_{max} = 0.129 \frac{m}{R} [1]
$$
\n
$$
v(t) = 0.129 \frac{m}{s} (1 - \frac{(0.0045m)^2}{(0.005m)^2})
$$
\n
$$
v(t) \approx 0.02451 \frac{m}{s}
$$
\n
$$
v(t) \approx 0.02451 \frac{m}{s}
$$
\n
$$
v(t) \approx v_{max}
$$
\n• *v*(t) is significantly lower than the maximum velocity within the aneurysm, indicating a stagnation zone.

 m S $v(t) \ll v_{max}$

A Mellin

A Mellin

15

T E S T I N G P R O C E D U R E

Set up:

- Attach aneurysm model to pump system.
- Set pump to systolic pressure of 120 mmHg and a diastolic of 80 mmHg.
- Observe aneurysm for physical deformities when hooked up (unwanted) and adjust as needed.
- Observe flow rates with Transonic Systems inc. Flowmeter.
- Record data with National Instruments DAQ.
- Analyze data in LabView.
- Use highspeed camera to record the flow profile within aneurysm.

Testing:

- Construct aneurysm with weak spot and observe rupture with regular 120/80 mmHg blood pressure and with higher pressures (130/80)
- Observe behavior with aneurysm set in brain tissue mimic.
-

SCHEDULE

Cerebral Aneurysm Rupture Project Schedule

Gant Chart Template @ 2006-2018 by Vertex42.com

Northern Arizona University Team F24toS25_02

A Mellin

NEW PART Printing Process

1. Load files into Chitubox

2. Select printer (Mars 4)

3. Adjust settings to resin type

o ELEGOO ABS-Like 3.0 Grey

1. PREGOO ABS-Like 3.0 Grey Printing Process

1. Load files into Chitubox

2. Select printer (Mars 4)

3. Adjust settings to resin type

o ELEGOO ABS-Like 3.0 Grey

• Bottom Exposure: 25-30 s Printing Process

1. Load files into Chitubox

2. Select printer (Mars 4)

3. Adjust settings to resin type

• ELEGOO ABS-Like 3.0 Grey

• Bottom Exposure: 25-30 s

• Normal Exposure: 2.8-3.2 s

• Layer Height: 0.05 mm

Printing Process

-
-
- - -
		-
		-
		- Z Lifting distance: $2 + 3$ mm
		- \overline{Z} Lifting speed: 75 + 230 mm/min
		- Z Retract speed: 230+75 mm/min
		- Rest time after retract: 0.5 s

Curing Process

- Printing Process

1. Load files into Chitubox

2. Select printer (Mars 4)

3. Adjust settings to resin type

 ELEGOO ABS-Like 3.0 Grey

 Bottom Exposure: 25-30 s

 Normal Exposure: 2.8-3.2 s

 Normal Exposure: 2.4 3 m 1. Load files into Chitubox

2. Select printer (Mars 4)

3. Adjust settings to resin type

• ELEGOO ABS-Like 3.0 Grey

• Bottom Exposure: 25-30 s

• Normal Exposure: 2.8-3.2 s

• Layer Height: 0.05 mm

• Z Lifting distance
-
-

THANK YOU

 $R E F E R E N C E S$

[1] M. Murakami, F. Jiang, N. Kageyama, and X. Chen, "Computational Fluid Dynamic

Blood Flow Changes during the Growth of Saccular Abdominal Aortic Aneurysm," Ann **REFERENCES**
[1] M. Murakami, F. Jiang, N. Kageyama, and X. Chen, "Computational Fluid Dynamics Analysis of
Blood Flow Changes during the Growth of Saccular Abdominal Aortic Aneurysm," Annals of Vascular
Diseases, vol. 15, Blood Flow Changes during the Growth of Saccular Abdominal Aortic Aneurysm," Annals of Vascular Diseases, vol. 15, no. 4, pp. 260–267, Dec. 2022, doi: https://doi.org/10.3400/avd.oa.22-00098.

[2] J. P. Greving et al., "Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies," The Lancet. Neurology, vol. 13, no. 1, pp. 59–66, Jan. 2014, doi: https://doi.org/10.1016/S1474-4422(13)70263-1. *Diseases, vol.* 15, no. 4, pp. 260–267, Dec. 2022, doi: https://doi.org/10.3400/avd.oa.22-00098.
[2] J. P. Greving et al., "Development of the PHASES score for prediction of risk of rupture of
intracranial aneurysms: a po

[3] J. Xiang et al., "Initial Clinical Experience with AView—A Clinical Computational Platform for Intracranial Aneurysm Morphology, Hemodynamics, and Treatment Management," World Neurosurgery, vol. 108, pp. 534–542, Dec. 2017, doi: https://doi.org/10.1016/j.wneu.2017.09.030.

[4] J. Friesen et al., "Comparison of existing aneurysm models and their path forward," Computer Methods and Programs in Biomedicine Update, vol. 1, p. 100019, 2021, doi: