Initial Testing Results

NG Two-Stage Supersonic Rocket Presenters: Austin Paothatat, Avery Charley, Koi Quiver, Lindsey Dineyazhe

College of Engineering, Informatics, and Applied Sciences

Design Requirement Summary

Customer Requirements

- CR1- Develop a two-stage launch vehicle.
- CR2- Use of a stage separation device.
- CR3- The vehicle will be constructed of composite materials.
- CR4- Vehicle will reach an altitude of at least 30,000 ft AGL (Above Ground Level).
- CR5- Final launch vehicle will be required to carry a maximum 10 Lb payload that will fit within a 6" diameter bay
- CR6- Vehicle required to reach a maintain over Mach 2 or roughly 1500 mph and maximize time spent at that speed or greater.
- CR7- Acceleration of the vehicle needs to meet a minimum of 12g's
- CR8- Vehicle trajectory will be simulated in Rocksim.
- CR9- Vehicle required to use commercial rocket motors.
- CR10- Recovery of entire launch vehicle for reuse.

Engineering Requirements

- ER1- Max Velocity Mach 2 or 1500 mph
- ER2- Separation Event Successful or unsuccessful separation
- ER3- Altitude 40,000 ft AGL (Above Ground Level)
- ER4- Payload Weight 10lbs
- ER5- Cost of production \$7000 USD
- ER6- Reusable more than 1 use
- ER7- Payload Volume 282.7 in^3

Avery 11/21/2024 NG Super Sonic Rocket

Ground Level Testing Summary

Success Levels	Goals (Applied to CR1, 2, 10 and ER2 and 6)
Complete Ground Testing Success	 Flight computers and redundant systems initiate all energetics at the assigned time and altitude. GPS tracking performs nominally through carbon composite. GPS tracking performs nominally with natural obstructions around vehicle. (trees, bushes, hills, etc.) All energetic deploy recovery systems with primary charges. Secondary charges will be based on primary charges with extra ordnance to ensure deployment if primary fails. No anomalies (disconnection, hardware failure, and hard impacts) during simulated flight and payload mission until completed flight and recovery.
Partial Ground Testing Success	 Separation system performs nominally. Recovery deployment fails to eject recovery systems. Test again with increased ordnance until deployment occurs nominally. Adjust for high altitude flight due to decreased expansion potential. Flight computers, GPS, and redundant systems perform nominally. All components are recovered and reusable with minor damage.
Partial Ground Testing Failure	 Failure of separation system ignition and structural parts Deployment of recovery system are nominal, and no failures or damage occurs. GPS system failure(disconnection, or hardware failure due to ejection system discharge) Structures are intact and no anomalies occurs.
Complete Ground Testing Failure	 Failure of both GPS, flight computers, and redundant systems Failure of recovery system deployment and beyond reasonable repair state (burn through, structural damage, electronics failure)\ Failure of separation system(structural or binding) Failure of chute protection system and shock cord failure.

Table 2: Ground Testing Success Criteria

Koi 11/21/2024 NG Super Sonic Rocket

Ground Level Testing Summary

Experiment/Test	Relevant DRs	Testing Equipment	Other Resources
EXP1- Avionics Functionality	CR1, CR2, CR10, ER2, ER6	Avionics Assemblies, Ground Station, Phone	Lab Space
EXP2- GPS Signal Test	CR1, CR2, CR10, ER2, ER6	Avionics Assemblies, Ground Station, Phone	Outside Space, Variety of Terrain
EXP3- Ejection Charge Mock Test	CR1, CR2, CR10, ER2, ER6	Avionics Assemblies, LEDs, Phone	Lab Space

 Table 1: Test Summary Table

Koi 11/21/2024 NG Super Sonic Rocket

Detailed Testing Plans

Ground Testing Procedure

- Assemble Avionics Bays for both Booster stage and Main Vehicle
- Attach Flight computers, GPS, and Ejection Charge Terminal Block
- Connect flight computers to Ejection Charge Terminal Block
- Insert LED lights into Ejection Charge Terminal Block
- Connect Flight Computer and GPS to batteries, then connect to phone
- Ensure flight computer is reading all terminal blocks on phone app and multimeter.
- Set up flight simulation in phone app.
- Run full flight simulation.
- Ejection Charges set off, lighting up LED Lights.

Testing Results

- Verified Avionics Systems Functionality
- GPS tracking functions properly but is blocked when installed inside carbon tube.(Mitigated with outside whip antenna or fiberglass window)
- Ejection charge Mock test nominal
- Separation event confirmed at programmed timing

Austin 11/21/2024 NG Super Sonic Rocket

Engineering Specification Sheet

ER	Target	Tolerance	Measured/Calculated Value	ER Met?	Client Acceptable?			
ER1- Max Velocity	Mach 2 or 1535mph	±100 mph or ± 0.13 Ma	Measured					
ER2 - Separation Event	Successful or unsuccessful separation	N/A	Measured					
ER3 - Altitude	30,000 ft AGL	±500 ft	Measured					
ER4 - Payload Weight	10lbs	± 0.5 lbs	Measured	Yes	Yes			
ER5 - Cost of production	\$7,000 USD	N/A	Measured	Yes	Yes			
ER6 - Reusable	>1	N/A	Measured	Yes	Yes			
ER7 - Payload Volume	282.7 in^3	±50 in^2	Measured	Yes	Yes			

 Table 3: ER Summary Table

Avery 11/21/2024 NG Super Sonic Rocket

Customer Specification Sheet

Customer Requirement	CR Met?	Client Acceptable
CR1 – Develop Launch Vehicle	Yes	Yes
CR2 – Separation System	Yes	Yes
CR3 – Composite Materials	Yes	Yes
CR4 – Altitude (40,000 ft.)		
CR5 – Payload (10 lb.)	Yes	Yes
CR6 – Speed (Mach 2)		
CR7 – Acceleration (12+ g's)		
CR8 – Trajectory Simulation	Yes	Yes
CR9 – Commercial Motors	Yes	Yes
CR10 – Recovery	Yes	Yes

 Table 4: CR Summary Table

Lindsey 11/21/2024 NG Super Sonic Rocket

				Pro	ject:	Tv	vo Sta	age S	upers	onic	Rock	et								
S	/stem QFD				Date:			3/	18/202	24										-
	-																			
1	Altitude		(++)																	
2	Body Diameter		<u> </u>	(++)																
3	Vehicle Speed		(++)		(++)															
4	Vehicle Acceleration		(++)		(++)	(++)														
5	Payload Weight		(+)	(+)	(+)	(+)	(++)													
	Seperation Event			(+)	(+)			(++)												
'	Reusable			(+)	(+)	(+)	(+)	(+)	(++)											
	Payload Volume			(++)			(+)			(++)										
	Body Material			(+)	(+)		(+)	(+)	(++)		(++)									
			Tech	nical R	lequire	ement	s					Cust	omer	Opin	ion S	Surv				
	Customer Needs	Customer Weights	Altitude	Body Diameter	Vehicle Speed	Vehicle Acceleration	Payload Weight	Seperation Event	Reusable	Payload Volume	Body Material	1 Poor	2	3 Acceptable	4	5 Excellent				
	Lightweight	4	9	3	9	9	9	1	3	1	9				Ì					
	Altitude	7	9	1	9	9	9	9	_	1	3						Body	Ranking	System	
	Max Velocity	8		1	9	9	9	9		1	3						Stron	g		9
	Payload Weight	5	3	9	9	9	9				1						Mode	rate		3
	Cost of Production	3		3				1	9	1	9						Weak	(1
	Separation Event	6	1	1	3	1		9	1		1						None			0
	Payload Volume	1		9	1		3			9										
	Reusable	2		1	1	3		1	9 Se	1	9									
	Technical Requirer	nent Units	ft	Ē	mach	gʻs	Lbs	N/A	# of us	in^3	sql									
	Technical Requireme	nt Targets	40000	6.25	2	12	10	Successfu I or not	5	282.7	45									
	Absolute Technical Ir	nportance	120	98	237	228	219	198	63	33	137									
	Relative Technical Ir	nportance	12.0	9.81	23.7	22.8	21.9	19.8	6.3	3.3	13.7									
			6	7	1	2	3	4	8	9	5									
				Fig	ure	1:0)FD	. Ho	use o	of Oi	ualit	v								

Lindsey 11/21/2024 NG Super Sonic Rocket

Top Level Testing Summary

Success Levels	Goals
Complete Mission Success	 Separation system works as expected, successful separation and second stage motor ignition. (CR1, CR2, ER2) Payload safely delivered and landed. Data captured. (CR4, CR7, CR6, CR10, ER1, ER3, ER6) Launch vehicle performance meets altitude goal. (CR5, CR6, CR9, ER2, ER3, ER4, CR3) Launch vehicle recovered in reusable condition, no damage to vehicle at all. (CR3, CR5, CR8, CR10, ER6, ER5) Recovery system performs as expected and designed. (CR1, CR2, CR10, ER2, ER6) No anomalies (drastic angle change, bird strike, etc.) during full flight and payload mission until completed flight and recovery (All CRs and ERs)
Partial Mission Success	 Flight success (All CRs and ERs) Velocity and altitude requirements met (CR4, CR6, CR7, CR9, ER1, ER3) Payload flown but no data recorded. (CR5, ER4) All components are recovered and reusable with minor damage. (CR1, CR3, CR10, ER4, ER6)
Partial Mission Failure	 Failure of payload or launch vehicle performance (All CRs and ERs) Successful flight with failure of payload data recording or delivery (CR5, ER4) Velocity or altitude requirement missed. (CR5, CR6, CR9, ER2, ER3, ER4, CR3) Vehicle or payload systems damaged during flight or landing (CR1, CR3, CR10, ER4, ER6)
Complete Mission Failure	 Failure of both launch vehicle and payload systems (CRs and ERs) Failure of recovery system deployment and beyond reasonable repair state (CRs and ERs) Failure of vehicle before, during, or after flight (All CRs and ERs)

Table 5: Mission Success Criteria

Koi 11/21/2024 NG Super Sonic Rocket

THANK YOU