

NAU Rocket Propulsion Capstone Team #3

Shannon Comstock, Remy Dasher, Andrew King, Grace Morris

PROJECT DESCRIPTION

Build a propulsion system for a high-power level 2 rocket:

- Develop a unique Ammonium Perchlorate Composite
 Propellant (APCP) formula
 - working with mentor(s)
 - using software simulators
- Design and build a rocket test stand (currently in build stage)
 - Work with EE team to input thrust and impulse data
- Have at least two motor testing's small scale 38 and 54 mm
- Impulse must not exceed 5120 Newton-seconds
- Optimize propellant formula
- Design and build a motor casing for final 75 mm
- Build a final 75mm diameter rocket motor to launch in March 2024

Figure 1: Level 2 Rocket Source: Apogee Components [1]

Shannon I 1/6/23 Rocket Propulsion Team 3

DESIGN DESCRIPTION: TEST STAND

- Rocket motor is locked into motor holder (#13)
- Sliding extrusion bars are moved to just below the nozzle
- Tighten knobs (#17) such that the threaded bar (#16) applies pressure to motor from all sides
- Attach cables to hooks at top of test stand (#8) and use stakes to secure the cables in ground
- Ensure motor is locked in place and load cell (#11) is secure

Remy I I/6/23 Rocket Propulsion Team 3

DESIGN DESCRIPTION: MOTOR

- The motor features three major components:
 - Propellant (#1)
 - Casting Tubes (#2)
 - Liners (#3)
- The propellant will be cast into individual casting tubes
- Multiple grains: casting tubes with propellant grains inside slide into the liner
- The liner with the grains inside makes the motor which slides into the casing

I I/6/23 Rocket Propulsion Team 3

Grace

DESIGN DESCRIPTION: MOTOR CASING

- Precise dimensions ensure a secure placement of the motor and lining
- Provides an attachment point for the bulkhead at the top of the casing
- Outer diameter matches the inner diameter of the rocket body for added stability
- Features a threaded connection for securing the nozzle onto the motor casing

Figure 4: Engineering Drawing Motor Casing

Shannon I 1/6/23 Rocket Propulsion Team 3

DESIGN DESCRIPTION: NOZZLE

- Graphite insert at throat to prevent erosion of copper nozzle
- Copper converging/diverging nozzle with parabolic curve generated using method of characteristics program
- × Threads securely into motor casing

Andrew 11/6/23 Rocket Propulsion Team 3

CUSTOMER REQUIREMENTS

Customer Requirements are critical because the team must prioritize these to fulfil the needs of the end user

- × Functionality Results must function to the end user's major needs.
- × Cost-Efficient Must stay within the given budget and be replicable for future club members
- × Scale-able Able to apply small-scale tests to full scale ones.
- × Test Stand Must be able to withstand up to L-Class motors (MAX 5120 Newton-Seconds)
- × Tripoli Rocketry Association Safety Standards Compliant Stay within known safety standards
- × Completion in timely manner Client needs the final product ready for the student launch

Figure 6: Rocket History Heights Source: First Post Chandraayan 2 Landing [3]

> Remy I 1/6/23 Rocket Propulsion Team 3

ENGINEERING REQUIREMENTS

Engineering Requirements allow us to quantify our customers product requirements

- × Completing Within Budget Must stay within client's budget (\$2000); able to fundraise more
- × Test Stand Accepting of Sub/Full-Scale motors Stand must accept any size motors (up to 75mm)
- × 5120 Newton Second Impulse Test stand must be rated to withstand the limits of Level 2 impulses
- × Thrust-to-Weight Ratio Must be within the thrust-weight ratio set by Tripoli Rocketry Association
- × Timely Completion Must be tested and completed by February-March for the student launch
- × Ductile, Non-Ferus Casing Must be housed correctly to make sure possible fragments or sparks are avoided

Figure 7: Rocket Motor Test Stand Source: BPS Space YouTube [4]

Remy I I/6/23 Rocket Propulsion Team 3

QFD

- New technical requirements break down the safety to be more specific
- New customer requirements to account for the cost of the project.

	Project:	Rock	et Clu	ub CAP	STO	NE							
System QFD	Date:			1	0/21/2	23			Le	aend			
									A	Aeroo	con		
									В	FUTE	K		
									С	Richa	ard Nakka	s	
Reach minimum altitude									D	75/12	80 Motor		
Stay within Budget for the Project		0							E	M135	50W		
Dimensions meet constraints of rocket size		9	0						F	L875	DM		
Stand withstands impulse of rocket testing		3	0	3									
Meet Minimum Thrust to Weight Ratio Set by Tripoli		9	3	6	6								
Complete final launch by march 2024		3	3	3	3	3							
Non-Ferrous Ductile Casing		3	0	3	3	6	3						
				Technica	al Requ	uireme	nts			Custom	er Opinion	Survey	
Customer Needs	Customer Weights	Reach minimum altitude	Stay within Budget for the Project	Dimensions meet constraints of rocket size	Stand withstands impulse of rocket testing	Meet Minimum Thrust to Weight Ratio Set by Tripoli	Complete final launch by march 2024	Non-Ferrous Ductile Casing	1 Poor	2	3 Acceptable	4	5 Excellent
Functionality	4	9	3	6	9	3	3	3		ABC	F	E	D
Low Cost	4	0	9	3	0	6	3	0	BEF		D	А	С
Scalable	3	3	3	9	6	6	3	3		С		AB	DEF
Sturdy Test Stand	4	3	3	6	9	3	3	3	CDEF	A			В
Comply with Tripoli Rocketry Association safety standards	5	3	3	6	6	9	3	9	с	A D	E		ΒF
Timely Completion	3	3	3	3	3	3	9	3	в	С	ADEF		
Technical Requirement Units			∳	ш	N-s	N/N	Months	N/X					
Technical Requirement Targets			2000	75	5120	5;1	ю	٢					
Absolute Technical Importance			57	114	129	96	75	87					
Relative Te	chnical Importance	4	0	LO.	40	LQ LQ	4	LQ.					

Grace I I/6/23 Rocket Propulsion Team 3

QFD

- Each ER correlates strongly to at least one customer need
- The test stand has the highest technical importance
 - Sturdy = Safer
 - Allows us to quickly iterate propellant

			-	Technica	al Requ	ireme	nts		ļ
Customer Needs	Customer Weights	Reach minimum altitude	Stay within Budget for the Project	Dimensions meet constraints of rocket size	Stand withstands impulse of rocket testing	Meet Minimum Thrust to Weight Ratio Set by Tripoli	Complete final launch by march 2024	Non-Ferrous Ductile Casing	
Functionality	4	9	3	6	9	3	3	3	
Low Cost	4	0	9	3	0	6	3	0	
Scalable	3	3	3	9	6	6	3	3	
Sturdy Test Stand	4	3	3	6	9	3	3	3	
Comply with Tripoli Rocketry Association safety standards	5	3	3	6	6	9	3	9	
Timely Completion	3	3	3	3	3	3	9	3	
Technical	Requirement Units	km	\$	шш	N-s	N/N	Months	٨/٨	
Technical Re	equirement Targets	10	2000	75	5120	5;1	3	≻	
Absolute Tec	chnical Importance	81	57	114	129	96	75	87	[F

Grace II/6/23 Rocket Propulsion Team 3

ENGINEERING CALCULATIONS: TEST STAND

- × By applying a heat flux of 230 $x \ 10^4 \ W/m^2$ directly to the upper frame
- Max temperature is 844.15 degrees F
- Aluminum can warp at 400 degrees F
- × Steel can warp at 1500 degrees F
- The aluminum
 extrusion should be
 wrapped in thermal
 shielding to prevent
 damage

Shannon I I/6/23 Rocket Propulsion Team 3

ENGINEERING CALCULATIONS: TEST STAND

- × Stresses dissipate quickly
- Mitigates system parts which experience stress
- Shows how the forces stay local to base plate
- × Max normal stress is 22.9 psi, causing minimal fatigue
- Max shear stress is 4.19 psi due to pressure from load cell on the plate
- This small of a shear stress and normal stress over the approximate 4 second intervals of motor testing won't impact the structural integrity.

Shannon I 1/6/23 Rocket Propulsion Team 3

ENGINEERING CALCULATIONS: PROPELLANT

T = F/A

T= Fa/ (h* 2 *Pi*r)

Tmax= FS* Fa/ (h* 2*Pi*Ri)

 $| \rightarrow R_i \qquad R_o$

Tmax= (Fa/ (h* Ri)) * (0.75/Pi)

Tmax= (1245.5 N/ (0.1143 m* .0111125 m)) * (0.75/Pi)= 234097.6846 pa

Tmax~ 0.5*Tensile

Tensile= 0.468195 Mpa

Tensile Actual~ 1.5 Mpa [2]

For a 35 mm motor Ri= 7/16 in h= 4.5 in Fa~ 280 lbf

Grace

I I/6/23 Rocket Propulsion

Team 3

ENGINEERING CALCULATIONS: MOTOR CASING (REMY)

[2] MATLAB logo, Source: wikipedia.org

MATLAB is used for the primary calculations.

- × Ease of use
- × Quick calculations given a small material change
- × Concise and readable

These are the major factors we must consider to make sure our casing is successful and retains the high pressures and temperatures that are experienced:

- × Hoop Stress
- × Axial (Longitudinal) Stress
- × Overall Material Selection

Remy I 1/6/23 Rocket Propulsion Team 3

Figure 8: Rocket Motor Casing Various Sizes Source: Sunward Hardware Casing [5]

ENGINEERING CALCULATIONS: MOTOR CASING (REMY)

Hoop Stress: The stresses acting on the circumference of a pressurized cylinder

First, we must analyze which equation we must use (Thick/Thin Walled)

 $\frac{r}{t} \ge 10$

% Thick/Thin Walled Calc (Despite Thickness Ratio) Casing_Pressure_Thin = (4*FOS_Yield_Strength*Casing_Thick)/Casing_ID_in; % Internal Casing Pressure [psi] (Thin Walled) Casing_Pressure_Thick = ((FOS_Yield_Strength/(1+((Casing_OR_in^2)/(Casing_IR_in^2))))*((Casing_OR_in^2)-(Casing_IR_in^2)))/Casing_IR_in^2; % Internal Casing Press if Thick_Ratio >= 10 Allowable_Casing_Pressure = ((FOS_Yield_Strength/(1+((Casing_OR_in^2)/(Casing_IR_in^2))))*((Casing_OR_in^2)-(Casing_IR_in^2))/Casing_IR_in^2 % Allowable Internal else Allowable_Casing_Pressure = (2*FOS_Yield_Strength*Casing_Thick)/Casing_ID_in % Allowable Internal Casing Pressure [psi] (Thin Walled)| end

Thick Walled:

Thin Walled:

Equations from Shigleys Mechanical Engineering Design Textbook [1] Remy 11/6/23 Rocket Propulsion Team 3

ENGINEERING CALCULATIONS: MOTOR CASING (REMY)

Axial Stress: The stresses acting on the end caps of the cylinder

end

% Thick/Thin Walled Calc (Despite Thickness Ratio)
Bulkhead_Pressure_Thin = ((4*FOS_Yield_Strength*Casing_Thick)/Casing_ID_in); % Bulkhead Pressure [psi] (Thin Walled)
BulkHead_Pressure_Thick = ((FOS_Yield_Strength*((Casing_OR_in^2)-(Casing_IR_in^2)))/(Casing_IR_in^2)); % Bulkhead Pressure [psi] (Thick Walled)
if Thick_Ratio >= 10
 Allowable_Bulkhead_Pressure = ((FOS_Yield_Strength*((Casing_OR_in^2)-(Casing_IR_in^2)))/(Casing_IR_in^2)) % Allowable Bulkhead Pressure [psi] (Thick Walled)
else
 Allowable_BulkHead_Pressure = ((4*FOS_Yield_Strength*Casing_Thick)/Casing_ID_in) % Allowable Bulkhead Pressure [psi] (Thin Walled)

Thin Walled:

Equations from Shigleys Mechanical Engineering Design Textbook [1]

Remy I 1/6/23 Rocket Propulsion Team 3

ENGINEERING CALCULATIONS: NOZZLE

Method of Characteristics (MOC)

- Computes the minimum-length, ideal curve of an axisymmetric nozzle.

The Characteristic mesh is calculated with solving for the compatibility equations for an inviscid, irrotational, axisymmetric supersonic flow:

 $d\theta = \mp \sqrt{M^2 - 1} \frac{dV}{V} \pm \frac{1}{\sqrt{M^2 - 1} + \cot(\theta)} \frac{dr}{r}$

When substituting the differential of the Prandtl-Meyer function, *dv*, the final compatibility equations are as follows:

$$d(\theta + \nu) = \frac{1}{\sqrt{M^2 - 1} - \cot(\theta)} \frac{dr}{r} \quad \text{(along a C- characteristic)}$$
$$d(\theta - \nu) = -\frac{1}{\sqrt{M^2 - 1} + \cot(\theta)} \frac{dr}{r} \quad \text{(along a C+ characteristic)}$$

The MATLAB program requires user input for the estimated exit Mach number (M_e), the heat capacity ratio (γ)

<pre>mach_exit= 3</pre>	; %estimated exit mach number
gamma= 5/3 - 1.667	; %heat capacity ratio (perfect gas)
N_lin= 20	; %linear kernel
N_comp= 5 -	; %compressed kernel - set 1 for uncompressed kernel
index_comp= 5	
th= 1e-7	; %tolerance
AR= 1	; %aspect ratio for the transition region

The equations are as follows: Exit Mach Number: $C_p - c_v = \frac{R}{J}$ $M_e = \frac{V_e}{\sqrt{\gamma R T_e}}$ $\gamma = \frac{c_p}{c_v}$ $c_p = \frac{\gamma R}{(\gamma - 1) J}$

Where, θ = deflection angle M = Initial Mach number of supersonic flow M_e = Mach number at nozzle exit v = Prandtl-Meyer function

Andrew 11/6/23 Rocket Propulsion Team 3

ENGINEERING VALIDATION: TEST STAND

- Critical Modes of Failure
 - Top extrusion bars experience temperature deformation
 - Bottom extrusion bars experience force deformation
- Mitigation of Potential Failures:
 - Coating/ wrapping extrusion top bar with thermal shield
 - Simulate different ways of connecting load cell plate to extrusion bar
- Risk Trade Off Analysis:
 - Ansys static structural and thermal simulations
- Testing Procedures
 - Burning motors on the test stand
 - Checking for deformations of parts
 - Checking bolts for loosening
- Required Equipment
 - Safety glasses, test stand, rocket motor, safety barrier
 - Large open area with little to no vegetation

Product Name: Motor	r Test Stand	Development Team: Shannon Comstor	Dasher, Andrew King, Grace N	Page No of							
System Name: Motor	r Testing					FMEA Number					
Subsystem Name: Thru	ist and Impulse Analysis					Date 11/1/2023					
Component Name:	Test Stand										
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action		
Top Brackets	Temperature Deformation	Top extrusion bars and brackets will loosen due to expansion from motor exhaust heat, decreasing the structural interity over time	3	Motor exhaust reaches high temperature	4	Maintenance requirement to tighten all bolts	2	24	None		
	Thermal Fatigue from the expansion and contraction from the exhaust heat on the brackets	Crack propogations can cause brackets to fail, decreasing the structural integrity	4	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	3	24	None		
Bottom Brackets	Force Deformation	The brackets warp causing the structural integrity to decrease.	2	Impact loading from thrust force	2	Designed to withstand max loading	3	12	None		
Top Extrusion Bars	Temperature Deformation	The aluminum extrusion warps from heat exposure, causing structure to deform and potentially effect grip on motor	6	Motor exhaust reaches high temperature	5	Coat/ cover the parts exposed to heat with thermal sheilding	4	120	Simulate thermal analysis of these components and detemrine if design needs to be altered		
	Thermal Fatigue from the expansion and contraction from the exhaust heat	The aluminum extrusion fractures/ fails, causing motor to lack support in its fixed position	3	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	з	18	None		
Bottom Extrusion Bars	Force Deformation	Instability in motor mounting during testing may cause motor to become disloged and become a projectile	9	Impact loacing from thrust force	4	Designed to withstand max loading	5	180	Simulate structural analysis of these components and determine if design needs to be altered		
Bolts	Force deformation (Shearing)	Bolts shear during testing, potentially causing bracket to be unsupported	4	Impact loacing from thrust force	5	Designed to withstand max loading	4	80	None		
	Force Deformation (Normal Stress)	Bolts buckle from compressive stress causing lack in structural integrity	4	Impact loacing from thrust force	5	Designed to withstand max loading	3	60	None		
	Temperature Deformation	Bolts come loose from the structure, causing instability, potentially lack of support for motor	4	Motor exhaust reaches high temperature	2	Maintenance requirement to tighten all bolts	2	16	None		
	Thermal Fatigue from the expansion and contraction from the exhaust heat	Bolts crack during tesing, decreasing structural integrity	2	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	2	8	None		
T-Nuts	Force Deformation (Normal Stress)	Loosens from bolts, compromising the strength of the brackets hold on the extrusion	2	Impact loacing from thrust force	1	Maintenance requirement to tighten all	2	4	None		

Shannon 11/6/23 Rocket Propulsion Team 3

Product Name: Motor Test Stand		Development Team: Shannon Comstoc	k, Remy [Dasher, Andrew King, Grace N	lorris	Page No of					
System Name: Motor	r Testing					FMEA Number					
Subsystem Name: Thru	st and Impulse Analysis					Date 11/1/2023					
Component Name:	Test Stand										
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action		
Top Brackets	Temperature Deformation	Top extrusion bars and brackets will loosen due to expansion from motor exhaust heat, decreasing the structural interity over time	3	Motor exhaust reaches high temperature	4	Maintenance requirement to tighten all bolts	2	24	None		
	Thermal Fatigue from the expansion and contraction from the exhaust heat on the brackets	Crack propogations can cause brackets to fail, decreasing the structural integrity	4	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	3	24	None		
Bottom Brackets	Force Deformation	The brackets warp causing the structural integrity to decrease.	2	Impact loading from thrust force	2	Designed to withstand max loading	3	12	None		
Top Extrusion Bars	Temperature Deformation	The aluminum extrusion warps from heat exposure, causing structure to deform and potentially effect grip on motor	6	Motor exhaust reaches high temperature	5	Coat/ cover the parts exposed to heat with thermal sheilding	4	120	Simulate thermal analysis of these components and detemrine if design needs to be altered		
	Thermal Fatigue from the expansion and contraction from the exhaust heat	The aluminum extrusion fractures/ fails, causing motor to lack support in its fixed position	3	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	3	18	None		
Bottom Extrusion Bars	Force Deformation	Instability in motor mounting during testing may cause motor to become disloged and become a projectile	9	Impact loacing from thrust force	4	Designed to withstand max loading	5	180	Simulate structural analysis of these components and determine if design needs to be altered		
Bolts	Force deformation (Shearing)	Bolts shear during testing, potentially causing bracket to be unsupported	4	Impact loacing from thrust force	5	Designed to withstand max loading	4	80	None		
	Force Deformation (Normal Stress)	Bolts buckle from compressive stress causing lack in structural integrity	4	Impact loacing from thrust force	5	Designed to withstand max loading	3	60	None		
	Temperature Deformation	Bolts come loose from the structure, causing instability, potentially lack of support for motor	4	Motor exhaust reaches high temperature	2	Maintenance requirement to tighten all bolts	2	16	None		
	Thermal Fatigue from the expansion and contraction from the exhaust heat	Bolts crack during tesing, decreasing structural integrity	2	Motor exhaust reaches high temperature	2	Coat/ cover the parts exposed to heat with thermal sheilding	2	8	None		
T-Nuts	Force Deformation (Normal Stress)	Loosens from bolts, compromising the strength of the brackets hold on the extrusion	2	Impact loacing from thrust force	1	Maintenance requirement to tighten all bolts	2	4	None		

ENGINEERING VALIDATION: PROPELLANT

- Critical Modes of Failure
 - Propellant grains experiencing Force deformation
 - Propellant grains having accelerated burn rate
- Mitigation of Potential Failures:
 - Multiple team members check the hardness of grains
 - Manufacturing the grains with the use of a shake table
- Testing Procedures
 - Measure hardness
 - Weighing grains
 - Measuring the volume of grains
- Required Equipment
 - Hardness tester
 - Scale and calipers
 - PPE

Product Name		Development team: Shannon, I	drew, Grace	Page No of					
System Name						FMEA Number	r		
Subsystem Name	e					Date 11/3/23			
Component Nam	e Motor								
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurrence (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
		Propellant falls out of rocket either before or during combustion depending on severity, this leads to unsafe conditions for spectators and decreased altitude		Incorrect propellant formulation; Propellant is		Hardness			Two or more team members should look over the grains
Propellant Grain	Force Deformation	performance	9	not fully cured	4	checks	2	72	prior to launch
		Pressure builds and the rocket explodes, or the fuel burns too fast and decreases altitude		Propellent contains voids due to errors in		Density			Include a shake table in manufacture to reduce size
	Accelerated Burn Rate	performance	10	manufacturing processes	3	checks	2	60	and occurrence of voids
	Decelerated Burn Rate	Minimum thrust-to-weight ration is not meet and rocket can not lift off	7	Incorrect propellant formula	7	Iterative formula testing and analysis	1	49	Double check final iterations with a mentor prior to launch
Casting Tubes	Inconsistent Part Quality	The propellant grain does not fit properly in the liner and needs to be trimmed down	2	Casting tube is ripped	1	Rough quality control of incoming parts	2	4	None
		The motor does not fit				Rough quality control of incoming			
Motor Liners	Inconsistent Part Quality	properly in the casing	6	Incorrect Tolerances	1	parts	2	12	None
F-Matich	Short Circuit	Ignition would fail and nothing	5	Manufacturer error	1	Rough quality control of incoming parts	6	30	None

Grace I I/6/23 Rocket Propulsion Team 3

Product Name		Development team: Shannon, F	Remy, An	drew, Grace		Page No of	f				
System Name		_				FMEA Number	r				
Subsystem Name	9	_				Date 11/3/23					
Component Nam	Motor		1		······						
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurrence (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action		
Propellant Grain	Force Deformation	Propellant falls out of rocket either before or during combustion depending on severity, this leads to unsafe conditions for spectators and decreased altitude performance	9	Incorrect propellant formulation; Propellant is not fully cured	4	Hardness	2	72	Two or more team members should look over the grains prior to launch		
roponant oram	Accelerated Burn Rate	Pressure builds and the rocket explodes, or the fuel burns too fast and decreases altitude	10	Propellent contains voids due to errors in manufacturing processes	3	Density	2	60	Include a shake table in manufacture to reduce size		
	Decelerated Burn Rate	Minimum thrust-to-weight ration is not meet and rocket can not lift off	7	Incorrect propellant	7	Iterative formula testing and analysis		49	Double check final iterations with a mentor prior to launch		
Casting Tubes	Inconsistent Part Quality	The propellant grain does not fit properly in the liner and needs to be trimmed down	2	Casting tube is ripped during manufacturing	1	Rough quality control of incoming parts	2	4	None		
Motor Liners	Inconsistent Part Quality	The motor does not fit properly in the casing	6	Incorrect Tolerances	1	Rough quality control of incoming parts	2	12	None		
E-Matich	Short Circuit	Ignition would fail and nothing would happen	5	Manufacturer error	1	Rough quality control of incoming parts	6	30	None		

ENGINEERING VALIDATION: MOTOR CASING

- Critical Modes of Failure
 - Aluminum casing experiencing a rupture which destroys the casing and is a safety hazard
- Mitigation of Potential Failures:
 - Ensure uniform thicknesses and looking for material imperfections
 - Ensure grains are free of voids or pits
- Risk Trade Off Analysis:
 - Ensuring tubing is uniform and free of pitting and other manufacturing defects
- Testing Procedures
 - Attempt a hydrostatic test with the casing to make sure it can withstand experienced pressures
- Required Equipment
 - Micrometer

Product Name	NAU Rocket Capstone								
System Name		D	0	- I. Dania dan Dashar Arda					
Subsystem Name		Development Team: Snanr	ion Comst	ock, Remington Dasher, Andre	ew King, Grac	e Morris			
Component Name	Motor Casing								
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
Aluminum Casing	Casing rupture	Explosive decompression caused by rapid gas fluxuation	10	Voids in propellant grains, inconsistant aluminum rounds, incorrect milling	5	Grain analysis, Aluminum checks	4	200	Assign 1-2 teammembers to analyze each grain for voids, make sure during milling that aluminum is sound
Bulkheads	Bulkhead rupture	Rapid decompression which causes harm to the casing	4	Incorrectly machined parts, Faulty O-rings	3	Consistant dimension checks during machining	3	36	Make sure that consistant checks on the bulkhead dimensions are done, ensuring o-rings are consistant
C	Radial Bolt Failure	Destroys casing and bulkhead is no longer secure	5	Impropper bolt selection	4	Load analysis of the bulkead/casing interaction	4	80	Ensure that the load analysis gives accurate results to ensure proper bolt selection
c	Pressure Transducer Thread	Destroys bulkhead and pressure transducer	3	Incorrect thread tapping, teflon tape use	4	Ensuring threads are fully cut	2	24	Make sure with machine shop managers that threads are adequetly cut
Vozzle	Nozzle Improperty Secured	Nozzle unseats or falls out which would ruin	5	Incorrect seating, loose	3	Move the nozzle and look out for any slop or other signs of incorrect seating	1	15	Prepare an accurate CAD model to make sure nozzle

Remy I I/6/23 Rocket Propulsion Team 3

Product Name	NAU Rocket Capstone								
System Name			0		<i>K</i> : 0				
Subsystem Name		Development Team: Shanr	ion Comsto	ock, Remington Dasher, Andre	ew King, Grac	e morris			
Component Name	Motor Casing								
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
Aluminum Casing	Casing rupture	Explosive decompression caused by rapid gas fluxuation	10	Voids in propellant grains, inconsistant aluminum rounds, incorrect milling	5	Grain analysis, Aluminum checks	4	200	Assign 1-2 teammembers to analyze each grain for voids, make sure during milling that aluminum is sound
Bulkheads	Bulkhead rupture	Rapid decompression which causes harm to the casing	4	Incorrectly machined parts, Faulty O-rings	3	Consistant dimension checks during machining	3	36	Make sure that consistant checks on the bulkhead dimensions are done, ensuring o-rings are consistant
C	Radial Bolt Failure	Destroys casing and bulkhead is no longer secure	5	Impropper bolt selection	4	Load analysis of the bulkead/casing interaction	4	80	Ensure that the load analysis gives accurate results to ensure proper bolt selection
C	Pressure Transducer Thread Failure	Destroys bulkhead and pressure transducer	3	Incorrect thread tapping, teflon tape use	4	Ensuring threads are fully cut	2	24	Make sure with machine shop managers that threads are adequetly cut
		Nozzle unseats or falls out which would ruin		Incorrect seating, loose		Move the nozzle and look out for any slop or other signs of incorrect			Prepare an accurate CAD model to make sure nozzle
Nozzle	Nozzle Improperly Secured	compression and thrust	5	nozzle fit	3	seating	1	15	seats correctly

ENGINEERING VALIDATION: NOZZLE

- Critical Modes of Failure
 - Cross sectional area of throat is too small, causing over pressurization of motor casing
 - Diverges too quickly, causing flow separation and subsequent side-loading forces
 - Temperature deformation
- Mitigation of Potential Failures:
 - Quality assurance checks on O-rings
 - Measure nozzle geometry with
 micrometers after manufacture
 - Run simulations with MOC, CFD, FEA
- Testing Procedures
 - Simulation software
 - Small scale experimental tests
- Required Equipment
 - Lathe
 - Micrometers or calipers
 - Manual Press

Product Name	NAU Rocket Club Capstone	Development Team: Shanno	n Comsto	ck, Remington Dasher, And	drew King,	Page No of					
System Name	Carbon Rocket	Grace Morris				FMEA Number					
Subsystem Name	Propulsion Subsystem					Date: 11/3/2023					
Component Name	75mm Rocket Nozzle										
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action		
									Pay special attention duri		
graphite insert for throat	Overpressurization of motor casing - Ductile Fracture	Explosion of motor casing, mounting points of nozzle are sheared off	10	Cross-sectional area of throat is too small	3	Measure precise throat diameter with micrometers	1	30	design process, and ensu the insert has been machined to the correct diameter		
	Throat area experiences	Decreased thrust	5	abrasive granules	4	simulations, and small scale	3	60	Pick isotropic graphite, pi		
	Mechanical vailure via crack propogation	Fracturing of graphite insert, rapid decrease in thrust	8	Thermal expansion	2	Ensure proper fitting, and FEA simulations	3	48	Choose temperature resistant graphite, and consider adding insulatior to reduce thermal expansion. Ensure the diameter is the same as th height of the insert		
	Insert is ejected out of nozzle due to force of exhaust gas	The insert becomes a high- velocity projectile and the rest of the propulsion assembly may fail	10	If the step-down that holds the insert in place is too weak	1	Perform FEA on parts to ensure required strenth	2	20	geometry, precicely machine graphite for a press-fit, Heat up metal nozzle during press fit		
Converging- Diverging nozzle	Ductile failure of diverging section	Explosion of motor casing, rapid decrease in thrust	10	Nozzle diverges at too steep of an angle and the flow separation causes inintentional side-loading	2	CFD simulations in Ansys, and small scale test firings	2	40	Pay special attention duri design process, and ensu the nozzle has been machined correctly		
			9	The extreme temperatures weakens the design	3	Heat transfer simulations and hand calculations	2	54	select nozzle material tha has a high thermal conductivity and is resista to melting		
O-ring Seals	Force and/or temperature deformation	Increased likelihood of catastrophic motor failure, decrease in thrust performance, components that are not meant to experience extreme temperature will be affected by the escape of exhaust	10	Incorrectly sized O-rings; too small	2	ensure proper O- ring groove dimensions with calipers or micrometer Compare attached	1	20	Choose temperature resistant o-rings or implement additional insulation		
		Otherstein and the second s	10	Incorrect installation	3	O-ring Diameter with inner diameter of casing	1	30	Ensure that the O-rings fi securely in the machined grooves in nozzle fitting		
	Chemical and thermally induced corrosion	champer pressure will escape and have catastophic effects on motor and rocket parts	10	Manufacturer defect; did not cure properly in factory	1	Elastic strength tests	1	10	Implement quality assurance plan guring motor assembly		

Andrew II/6/23 Rocket Propulsion Team 3

Product Name	NAU Rocket Club Capstone	Development Team: Shannor	n Comsto	ck, Remington Dasher, And	frew King,	Page No of				
System Name	Carbon Rocket	Grace Morris				FMEA Number				
Subsystem Name	Propulsion Subsystem					Date: 11/3/2023				
Component Name	75mm Rocket Nozzle									
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action	
graphite insert for throat	Overpressurization of motor casing - Ductile Fracture	Explosion of motor casing, mounting points of nozzle are sheared off	10	Cross-sectional area of throat is too small High temp. exhaust,	3	Measure precise throat diameter with micrometers Simulations, and	1	30	Pay special attention during design process, and ensure the insert has been machined to the correct diameter	
	Throat area experiences	Decreased thrust		abrasive granules		small scale			Pick isotropic graphite, pick	
	extreme erosion	performance	5	present in exhaust gas	4	experimental burn	3	60	low-temperature propellant.	
	Mechanical vailure via crack propogation	Fracturing of graphite insert, rapid decrease in thrust	8	Thermal expansion	2	Ensure proper fitting, and FEA simulations	3	48	Choose temperature resistant graphite, and consider adding insulation to reduce thermal expansion. Ensure the diameter is the same as the height of the insert	
	Insert is ejected out of nozzle due to force of exhaust gas	The insert becomes a high- velocity projectile and the rest of the propulsion assembly may fail	10	If the step-down that holds the insert in place is too weak	1	Perform FEA on parts to ensure required strenth	2	20	geometry, precicely machine graphite for a press-fit, Heat up metal nozzle during press fit.	
Converging- Diverging nozzle	Ductile failure of diverging section	Explosion of motor casing, rapid decrease in thrust	10	Nozzle diverges at too steep of an angle and the flow separation causes inintentional side-loading	2	CFD simulations in Ansys, and small scale test firings	2	40	Pay special attention during design process, and ensure the nozzle has been machined correctly	
			9	The extreme temperatures weakens the design	3	Heat transfer simulations and hand calculations	2	54	Select nozzle material that has a high thermal conductivity and is resistant to melting	
O-ring Seals	Force and/or temperature deformation	Increased likelihood of catastrophic motor failure, decrease in thrust performance, components that are not meant to experience extreme temperature will be affected by the escape of exhaust	10	Incorrectly sized O-rings; too small	2	ensure proper O- ring groove dimensions with calipers or micrometer Compare attached	1	20	Choose temperature resistant o-rings or implement additional insulation	
		Chamber processes will	10	Incorrect installation	3	O-ring Diameter with inner diameter of casing	1	30	Ensure that the O-rings fit securely in the machined grooves in nozzle fitting	
	Chemical and thermally induced corrosion	escape and have catastophic effects on motor and rocket parts	10	Manufacturer defect; did not cure properly in factory	1	Elastic strength tests	1	10	Implement quality assurance plan guring motor assembly	

UPDATED BUDGET

A	ctual Expenses To-Date	
Subsystem	Products Needed	Amount
Nozzle		
Casing		
Test Stand	Aluminum Extrusion	156.5
	Angle Iron	30.82
	T-Nuts	81.56
	Screws	45.03
	Washer	32.93
Test Stand Electronics	3	
Test Rocket Motors	Aluminum Powder	29.41
	Binders	27.75
	Additives	71.62
	Liners	66.95
	Casting Materals	154.1
75mm Final Motor		
PPE	Gloves	24
		696.67

0		Expected Expenses									
Source	Amount	Subsystem	Products Needed	Amount							
Gore Fund	2000	Nozzle	Graphite	125							
Go Fund Me	350		Steel	150							
Undergrad Research	700		Lathe	450							
		Casing	Prototype Casings	25							
			Retaining Rings	40							
			Material for Final Casing	100							
		Test Stand	Steel Tubing	50							
			Aluminum Stock	50							
			Connectors	50							
			Bearings or Wheels	100							
EE Team	500	Test Stand Electronics	Load Cell	300							
			Arduino	50							
			Other EE Components	525							
		Test Rocket Motors	Ammonium Perchlorate	200							
			Aluminum Powder	100							
			Binder	150							
			Additives	75							
			Fuses	15							
		75mm Final Motor	Ammonium Perchlorate	250							
			Aluminum Powder	125							
			Binder	175							
			Additives	100							
			Fuses	15							
		PPE	Gloves	10							
			Eye Protection	5							
			Resperators	60							
Total	3550			3220							

Grace & Remy I 1/6/23 Rocket Propulsion Team 3

CURRENT SCHEDULE AND PROGRESS

Research, Build, Testing, and Flight Schedule NAU Rocket Capstone: Major Events Timeline 05/06/24 09/04/23 Project Start: 4 Sep 2023 11 Sep 2023 18 Sep 2023 25 Sep 2023 2 Oct 2023 9 Oct 2023 16 Oct 2023 23 Oct 2023 30 Oct 2023 13 Nov 2023 20 Nov 2023 27 Nov 2023 4 Dec 2023 11 Dec 2 Display Week: 1 6 Nov 2023 PROGRESS START END Design and Buil nitial Design (Test Stan 100% 09/18/23 10/12/23 Initial Design Revie 100% 10/12/23 10/12/23 100% 10/12/23 10/19/23 Design and Modify 100% 10/19/23 10/19/23 Design Approval Create BOM 90% 09/18/23 10/19/23 Test 1 100% 11/04/23 11/04/23 1st Protoype Pape 20% 11/04/23 11/10/23 Presentation 3 100% 10/23/23 11/06/23 10/10/23 Re-Design and Modify 0% 11/09/23 11/16/23 Design Approval 2 0% 11/16/23 11/16/23 11/04/23 11/24/23 11/16/23 11/24/23 0% Test 2 0% 11/25/23 11/25/23 Test Report 2 11/25/23 12/08/23 Final CAD and BOM 09/25/23 12/01/23 12/01/2

Shannon I I/6/23 Rocket Propulsion Team 3

SPRING SCHEDULE GANTT CHART PART I

Spring Semester Tentative Schedule

NAU Rocket Capstone: Major Events Timeline

Proj	ject Start:	01/1	6/24	05/15/24																							-		
Displ	lay Week:	1			15	5 Jan 20	024	22 J	an 2024	29	Jan 2024		5 Feb 20	24	12	Feb 202	4	19 Fe	b 2024		26 Fe	eb 2024	,	4 Ma	ar 2024		11 N	lar 202	4
					15 1	16 17 18	3 19 20 2	21 22 23	24 25 26 27	28 29 3	03112	3 4 5	678	9 10 1	1 12 13	14 15 1	6 17 18	19 20 2	1 22 23	24 25 2	26 27 2	28 29 1	23	45	678	9 10	11 12	13 14 2	15 16 17
PROGRESS	PROGRESS	START	END	Focal	M	TWT	FS	SMT	WTFS	S M 1	WTF	S S N	TWT	FSS	5 М Т	WT	s s	MT	V T F	SS	МТ	W T F	s s	МТ	WTF	s s	МТ	WT	FSS
Semester Kick Off																													
Spring Kickoff Meeting	0%	01/16/24	01/16/24																										
Project Management Assignment	0%	01/15/24	01/19/24																										
Engineering Model Summary Assignmeny	0%	01/19/24	01/26/24																										
Self Learning/ Individual Analysis Assignme	0%	01/16/24	02/02/24																										
Final Build Phase 1																													
Have all Parts Ordered for 75mm Motor	0%	01/22/24	02/05/24																										
Build final test motor 54 mm	0%	01/25/24	02/05/24																										
Launch 54mm test motor	0%	02/05/24	02/05/24																										
Hardware Status Update	0%	02/05/24	02/13/24																										
At Least 33% Built	0%	01/22/24	02/13/24																										
UGRADS Registration	0%	03/06/24	03/06/24																										
Website Check #1	0%	02/15/24	02/27/24	02/27/24																									
Hardware Status Update (at least 67% Built	0%	02/13/24	03/01/24																										
Final 75mm Motor Launch!!!	0%	03/08/24	03/08/24																										
Spring Break	0%	03/09/24	03/17/24																										

Shannon I I/6/23 Rocket Propulsion Team 3

SPRING SCHEDULE GANTT CHART PART 2

Spring Semester Tentative Schedule

NAU Rocket Capstone: Major Events Timeline

The notice capstone. Major Eve	Project Start:	01/1	.6/24	05/15/24]									
	Display Week:	8			4 Mar 202	4	11 Mar 2024	18 Mar 2024	25 Mar 2024	1 Apr 2024	8 Apr 2024	15 Apr 2024	22 Apr 2024	29 Apr 2
PROGRESS	PROGRES S	START	END	Focal	4 5 6 7 M T W T	8910 FSS	11 12 13 14 15 16 17 M T W T F S S	18 19 20 21 22 23 24 M T W T F S S	4 <mark>25 26 27 28 29 30 31</mark> M T W T F S S	1 2 3 4 5 6 7 M T W T F S S	8 9 10 11 12 13 14 M T W T F S S	15 16 17 18 19 20 21 M T W T F S S	22 23 24 25 26 27 M T W T F S	28 29 30 1 S M T W
Hardware Status Update (at least 67% B	Built) 0%	02/13/24	03/01/24											
Final 75mm Motor Launch!!!	0%	03/08/24	03/08/24											
Spring Break	0%	03/09/24	03/17/24											
Final Build Phase 2														
Testing Plan	0%	03/06/24	04/03/24											
Hardware Status, 100% Built	0%	03/06/24	04/03/24											
Final CAD Packet	0%	03/20/24	04/03/24											
Final Poster & PPT	0%	03/27/24	04/10/24											
Staff Meeting	0%	03/20/24	03/20/24											
Staff Meeting	0%	04/03/24	04/03/24											
Initial Testing Results	0%	04/10/24	04/10/24											
Final Report	0%	04/03/24	04/17/24											
Final Website Check	0%	04/10/24	04/17/24											
Product Demo	0%	04/17/24	04/17/24											
Final Testing Results	0%	04/17/24	04/17/24											
Practice Presentations In Class	0%	04/24/24	04/24/24											
Symposium -on Friday	0%	04/26/24	04/26/24											
Client Handoff	0%	04/24/24	05/01/24	05/01/24										

Andrew 11/6/23 Rocket Propulsion Team 3

THANK YOU!

QUESTIONS?

REFERENCES:

[1] R. G. Budynas and J. K. Nisbett, *Shigley's Mechanical Engineering Design*. New York, NY: McGraw Hill LLC, 2024.
 [2] Typical stress-strain curves of the tensile tests for HTPB propellant ..., <u>https://www.researchgate.net/figure/Typical-stress-strain-curves-of-the-tensile-tests-for-HTPB-propellant-under-the-test_fig2_331209759 (accessed Nov. 6, 2023).
</u>

IMAGE CITATIONS:

- × [1] I.Apogee Components, "Apogee components level-2," Rocket Kit, https://www.apogeerockets.com/Rocket_Kits/Skill_Level_4_Kits/Level-2 (accessed Nov. 2, 2023).
- × [2] [1] MATLAB logo, wikipedia.org
- × [3] tech2 N. Staff, "Chandrayaan 2 landing highlights: PM Narendra Modi says India stands in solidarity with ISRO scientists-tech news, Firstpost," Firstpost, https://www.firstpost.com/tech/science/chandrayaan-2-live-updates-isro-moon-mission-2019-india-vikram-lander-satellite-latest-news-live-status-communication-lost-crash-lunar-south-pole-7294631.html (accessed Nov. 4, 2023).
- × [4] Rocket Motor Test Stand.YouTube, 2019.
- × [5] "CTI pro29 hardware casing," Sunward Rockets CTI ProX High Power Motors and Hardware Hypertek Hybrids, https://www.sunward1.com/product/cti-pro29-hardware-casing/ (accessed Nov. 5, 2023).