ROCKET PROPULSION CAPSTONE TEAM #3 Shannon Comstock, Remington Dasher, Andrew King, Grace Morris

PROJECT DESCRIPTION

Build a propulsion system for a high-power level 2 rocket:

- Develop a unique Ammonium Perchlorate Composite
 Propellant (APCP)
- Design and build a rocket test stand
 - Work with EE team to input thrust data
- Have at least two motor testing's small scale
- Develop a motor casing
- Optimize rocket motor
- Build a final 75mm diameter rocket motor to launch in March 2024

Figure I: Rocket Launch Source: High Power Rocketry [1]

PROJECT PURPOSE

- Research and develop new formulas for rocket propellants
- Build large scale motor such that NAU Rocket Club can follow our designs
- Design and build a test stand for NAU Rocket Club
- Assist in development of aerospike nozzle design
- Develop skills in the aerospace field

Figure 3: Test Stand Source: Duluth Rocketry Team[3]

Figure 2: Propulsion section cut Source: Solid Propulsion Development [2]

FUNDING AND STAKEHOLDERS

- Project funding is being provided by W.L. Gore & Associates
- Our primary client is NAU Rocket club
 - Our propulsion system will be improved upon and used in future club projects
 - Have interest in a unique propulsion system that may be scaled up in size
- Additional Stakeholder: Professor Carson Pete
 - Faculty advisor for the NAU Rocket club

NAU Rocket Club

BLACK BOX MODEL: ROCKET PROPULSION

BLACK BOX MODEL: TEST STAND

Figure 5: Test Stand Source: Mobile Test Stand [5]

CONCEPT GENERATION: PROPELLANT FORMULATION

Percent By Weight	Component
70%	Ammonium Perchlorate
15%	Aluminum Powder
14%	Binder
۱%	Additives

Percent By Weight	Component
60%	Ammonium Perchlorate
25%	Aluminum Powder
14%	Binder
1%	Additives

Percent By Weight	Component
65%	Ammonium Perchlorate
20%	Aluminum Powder
14%	Binder
1%	Additives

- All percentages align with the ranges found in our sources
- Generated by looking at percentages in sources and comparing and compromising between them

ENGINEERING CALCULATIONS: PROPELLENT FORMULATION

- × ProPep will calculate these things for us
- × The governing equations are important

🖳 ProPepMain	- 🗆 ×	Results – D X
File Options Multiple Runs Notes About		Copy Results to a File Copy Results to Clipboard
File Options Multiple Runs Notes About Propellant Fomulation Grain Information Test Burns Compute A & N Ingredients Name Concept 1 Weight (gr) AMMONIUM PERCHLORATE 70.00 ALUMINUM (PURE CRYSTALINE) 15.00 HTPB (R-45M) 10.00	Operating Conditions Temp. of Ingredients (K) 298 Chamber Pressure (PSI) 1000	Copy Results to Clipboard Code WEIGHT D-H DENS COMPOSITION 0 AMMONIUM PERCHLORATE 70.000 -601 0.07040 1 CL 4 H 1 N 4 O 0 ALUMINUM (PURE CRYSTALINE) 15.000 0 0.09750 1 AL 0 HTPB (R-45M) 10.000 -367 0.03250 200 C 302 H 2 O 0 IDP (B. LEE) 5.000 -908 0.03120 38 H 19 C 2 O THE PROPELLANT DENSITY IS 0.06188 LB/CU-IN OR 1.7127 GM/CC THE TOTAL PROPELLANT WEIGHT IS 100.0000 GRAMS NUMBER OF GRAM ATOMS OF EACH ELEMENT PRESENT IN INGREDIENTS
IDP (B. LEE) 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Exhaust Pressure (PSI) 14.70 Boost Velocity and Nozzle Design Calculate lsp* 196.8531 C* 5195.499 Density 0.0618768	4.122274 H 1.048540 C 0.595760 N 2.423842 O 0.555967 AL 0.595760 CL T(K) T(F) P(ATM) P(PSI) ENTHALPY ENTROPY CP/CV GAS RT/V 3171 5249 68.02 1000.00 -50.28 231.97 1.1830 3.761 18.089 SPECIFIC HEAT (MOLAR) OF GAS AND TOTAL = 9.532 11.982 NUMBER MOLS GAS AND CONDENSED = 3.761 0.270
 ○ 0.00 ○ 0.00 ○ 0.00 ○ 0.00 ○ 0.00 Total Wt (grams) 	Molecular Wt 24.8083 Chamber CP/CV 1.183034 Chamber Temp. 3171.246 Display Results Display Graphs	1.246371e+000 H2 9.960066e-001 CO 5.559186e-001 HC1 4.965642e-001 H20 2.974772e-001 N2 2.702688e-001 Al203* 6.825920e-002 H 5.229062e-002 CO2 2.046359e-002 C1 1.048451e-002 HO 7.426241e-003 AlC1 3.601167e-003 AlC12 2.154777e-003 AlOC1 7.987877e-004 AlC13 6.622673e-004 AlHO2 5.942881e-004 NO 5.341821e-004 AlHO 3.408601e-004 O 1.019973e-004 AlO 8.750231e-005 NH3 7.929526e-005 CHO 6.619562e-005 CO21 1.871239e-005 Al2O 1.739327e-005 AlH 1.689252e-005 NH2 1.264216e-005 CH2O 1.064934e-005 HOC1 5.414812e-006 OC1 5.064441e-006 N 4.247003e-006 NH 3.168182e-006 CNHO 1.709902e-006 Al2O2 THE MOLECULAR WEIGHT OF THE MIXTURE IS 24.808

🛃 ProPepMain	- • ×	Results — D X
File Options Multiple Runs Notes About		Copy Results to a File Copy Results to Clipboard
ProPepMain File Options Multiple Runs Notes About Propellant Formulation Grain Information Test Burns Compute A & N Ingredients Weight (gr) AMMONIUM PERCHLORATE 65.00 ALUMINUM (PURE CRYSTALINE) 20.00 HTPB (R-45M) 10.00 IDP (B. LEE) 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Operating Conditions Temp. of Ingredients (K) 298 Chamber Pressure (PSI) 1000 Exhaust Pressure (PSI) 14.70 Boost Velocity and Nozzle Design 6 Calculate Isp* 197.1461 C* 5227.093 0.0626420 Molecular Wt 25.02966 Chamber CP/CV 1.175142 Chamber Temp. 3242.911 Display Display Results Display	Results - × Copy Results to a File Copy Results to Clipboard
		1.615255e+000 H2 1.037216e+000 CO 5.507436e-001 HC1 3.703645e-001 Al203 2.765713e-001 N2 8.268971e-002 H2O 1.124588e-002 CO2 5.299556e-003 H 1.333989e-003 C1 2.013126e-004 AlC13 1.723669e-004 AlC1 1.397343e-004 AlC12 3.002181e-005 HO 1.290569e-005 AlOC1 6.481689e-006 CNH 5.766320e-006 NH3 1.22336E-06 AlHO
		THE MOLECULAR WEIGHT OF THE MIXTURE IS 25.308 ************************************
		IMPULSE IS EX T* P* C* ISP* OPT-EX D-ISP A*M EX-T

ProPepMain			_		🖳 Results					_		<
ile Options Multiple Runs Notes	About				Copy Results to a File Co	opy Results to Clipboard						
ile Options Multiple Runs Notes pellant Formulation Grain Information Test Bur Ingredients Name Concept 3 AMMONIUM PERCHLORATE ALUMINUM (PURE CRYSTALINE) HTPB (R-45M) IDP (B. LEE)	About ms Comp ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	oute A & N Veight (gr) 60.00 25.00 10.00 5.00 0.00 0.00 0.00 0.00 0.00	Operating Conditions Temp. of Ingredients (K) Chamber Pressure (PSI) Exhaust Pressure (PSI) Boost Velocity and N Calculate Isp* C* Density	298 1000 14.70 Nozzle Design 191.6704 5080.634 0.0634263	Copy Results to a File Co Code 0 AMMONIUM PERCH 0 ALUMINUM (PURE 0 HTPB (R-45M) 0 IDP (B. LEE) THE PROPELLANT DENSITY THE TOTAL PROPELLANT WI NUMBER OF GRAM ATOMS OF 3.781841 H 1.048540 C 0.510651 N 2.083408 0 0.926612 AL 0.510651 CL T(K) T(F) P(ATM) 3123 5161 68.02 SPECIFIC HEAT (MOLAR) O NUMBER MOLS GAS AND CO 1.714516e+000 H2	weights to Clipboard weight LORATE 60.00 CRYSTALINE) 25.00 10.00 5.00 IS 0.06343 LB/CU-IN OR EIGHT IS 100.0000 GRAMS F EACH ELEMENT PRESENT IN ******CHAMBER RESULTS FOI P(PSI) ENTHALPY ENTROPY 1000.00 -44.27 220.00 OF GAS AND TOTAL = 8. NDENSED = 3.600 0. 1.044524e+000 CO CO	T D-H 0 -601 0 0 -367 0 -908 1.7556 0 INGREDIEN LOW **** CP/CV 2 1.1772 976 12. 330	DENS 0.07040 0.09750 0.03120 EM/CC NTS GAS F 3.600 .093	COMPOSITI 1 CL 4 1 AL 200 C 302 38 H 19 38 H 19 18.896	DN H 1 N C 2 O	4 O	
	~ ~ ~	0.00	Molecular Wt Chamber CP/ Chamber Ter	25.44326 CV 1.177161 np. 3122.51	2.166904e-001 HC1 3.065577e-002 H20 3.058705e-003 A1C13 1.481298e-003 A1H 1.404961e-004 NH3	2.036951e-001 AlC1 5.823047e-003 Cl 2.699320e-003 AlOC1 1.269511e-003 CNH 1.284496e-004 AlHO2	6.8360 5.6171 2.4884 4.5562 9.1009	099e-002 H 128e-003 Z 410e-003 C 235e-004 H 935e-005 C	H A120 C02 HO CHO	3.624560e- 4.500219e- 2.283812e- 3.116133e- 2.289523e-	-002 AlCl -003 Al -003 AlHO -004 AlO -005 Al20	2
Total Wt. (grams)		100.00	Display Results	Display Nozzle Graphs	2.285815e-005 CH4 1.909132e-005 CH2O 7.135681e-006 CN 3.445210e-006 N 1.05752E-06 CNC1 THE MOLECULAR WEIGHT O	2.027340e-005 CH3 1.082862e-005 O 4.683940e-006 Cl2 2.722967e-006 Al2 F THE MIXTURE IS 25.44	1.9703 1.0665 3.7254 1.7566	394e-005 M 566e-005 (427e-006 (622e-006 (NG COCL CNHO CH2	1.968756e 1.044298e 3.686930e 1.231752e	-005 NH2 -005 C2H2 -006 NH -006 A1HO	,
					*****	*****EXHAUST RESULTS FOR	T-OW ****	********	******	*****		

1933 3020

1.809828e+000 H2

1.530751e-001 HC1

4.428411e-003 CNH

1.617736e-004 Cl

1.897238e-005 CO2

8.0724E-06 NH3

SPECIFIC HEAT (MOLAR) OF GAS AND TOTAL =

NUMBER MOLS GAS AND CONDENSED = 3.500 0.347

THE MOLECULAR WEIGHT OF THE MIXTURE IS 25.995

T(K) T(F) P(ATM) P(PSI) ENTHALPY ENTROPY CP/CV GAS RT/V

1.043073e+000 CO

2.553673e-003 H

1.419980e-004 H2O

1.360842e-005 A120

********PERFORMANCE: FROZEN ON FIRST LINE. SHIFTING ON SECOND LINE*********

8.0724E-06 NH3

1.463217e-001 AlC1

1.00 14.70 -118.02 220.02 1.2023 3.500 0.286

8.588 10.747

4.941271e-002 A1C12

3.429885e-004 C2H2

3.997374e-005 Al

8.0724E-06 NH3

9.378925e-006 AlH

3.466747e-001 A1203& 2.530821e-001 N2

3.739645e-002 A1C13

1.903442e-005 AlOC1

2.557069e-004 CH4

8.917960e-006 CH3

Grace 10/9 Rocket Propulsion Team 3

CONCEPT EVALUATION: PROPELLANT FORMULATION

		DATUM	Option 1	Option 2	Option 3
Criteria	Weight	73% AP	70% AP	65% AP	60% AP
Reach minimum altitude	3		+	++	-
Stay within Budget for the Project	2	D	+	+	++
Dimensions meet constraints of rocket size	3	А	0	0	0
Stand withstands impulse of rocket testing	1	Т	-		+
Meet Minimum Thrust to Weight Ratio Set by Tripoli	3	U	-	-	
Complete final launch by march 2024	2	М	0	0	0
Non-Ferrous, Ductile Casings	3		0	0	0
+			5	8	5
0		17	3	3	3
-			4	5	9
TOTAL		0	1	3	-4

CONCEPT GENERATION: PROPELLANT GEOMETRY: BURNSIM DATA

Name: Ch	erry Limeaid		•	
Standard Pro	perties Pres	sure Varied	Properties Note	3
C* :	7237.57	ft/sec	S. Heat Ratio:	1.21
ISP*:	225	sec	Mol. Mass	0
BR Coef (a): 0.024986			
BR Exp (n)	: 0.327392			
Density :	0.06074	lb/in^3		
	,			

Propellant Properties Used:

"Cherry Limeade" formulation created by MIT. [1]

Nozzle Throat Dia:	0.485	inches	Area
Use Nozzle Calculation	ons		
Nozzle Exit Dia:	2.5	inches	
Expansion Ratio:	26.57		
Ambient Pressure:	14.7	psi	
Efficiency:	85		
Nozzle Dia Erosion	0	in / sec	
C Use Thrust Coefficien	nt		
Thrust Coefficient	0		

Nozzle Properties Used:

Standard un-drilled 75mm solid rocket motor nozzle. [2]

Rocket opulsio Team 3

CONCEPT GENERATION: PROPELLANT GEOMETRY DEFINITIONS

Star Grain

Figure 7. Remy 10/9 Rocket Propulsion Team 3 Figures 6 and 7: Rocket Motor Grain Source: K6r6 YouTube [6]

ENGINEERING CALCULATIONS: PROPELLANT GRAIN GEOMETRIES I

ENGINEERING CALCULATIONS: PROPELLANT GRAIN GEOMETRIES 2

Remy

10/9

Rocket

Propulsion Team 3

BurnSim Ready

ENGINEERING CALCULATIONS: PROPELLANT GRAIN GEOMETRIES 3

Remy 10/9 Rocket Propulsion Team 3

BurnSim Ready

CONCEPT SELECTION: PROPELLANT GEOMETRY

Major Factors: Casing Pressure, Burn Time, Impulse, Propellant Mass, & Curve Characteristics

Concept I: Properties	Concept I: Results
Max Casing Pressure	1791 psi
BurnTime	3.41s
Total Impulse	5387 Ns *
Propellant Mass	3.92 lbs. **

Concept 2: Properties	Concept 2: Results
Max Casing Pressure	2202.9 psi **
Burn Time	3.23s m **
Total Impulse	5007 Ns **
Propellant Mass	3.637 lbs. *

Concept 3: Properties	Concept 3: Results
Max Casing Pressure	1724.9 psi *
BurnTime	4.02s *
Total Impulse	5344 Ns
Propellant Mass	3.882 lbs.

* - Ideal Measures ** - Non-Ideal Measures

CONCEPT SELECTION: PROPELLANT GEOMETRY

		Option 1	Option 2	Option 3	Option 4
Criteria	Weight	Competition Motor	Uniform Concentric	Variying Geometries	Non-Uniform Concentric
Reach minimum altitude	3		+	-	+
Stay within Budget for the Project	2		+	1 23	
Dimensions meet constraints of rocket size	3	D	+	+	+
Stand withstands impulse of rocket testing	1	A	-	+	0
Meet Minimum Thrust to Weight Ratio Set by Tripoli	3	Т	+	-	++
Complete final launch by march 2024	2	U	-	-	+
Non-Ferrous, Ductile Casings	3	м	0	0	0
+			12	7	14
0		17	1	1	2
-			3	9	4
TOTAL		0	9	-2	10

CAD MODELS

Isometric View of the grains arranged in firing form. The white parts are the grains and the black part is the graphite nozzle.

Section view of the firing form grain arrangement. Like we saw in the grain geometry concept selection, these are exactly what we expect to cast for our grains. An aluminum casing will slide over this arrangement with an insulation material under it.

CAD MODEL (PROPELLANT GRAIN MOLDING APPARATUS

CONCEPT GENERATION ~ VERTICAL TEST STAND DESIGN I

Design Features:

- Motor secured to vertical rail on a linear bearing
- Easy to build, simplistic design
- Build from aluminum extrusion, which we already have

Disadvantages:

- The exhaust gas directly impacts the frame
- The motor will apply moment force on the linear bearing, which increases friction

ENGINEERING CALCULATIONS ~ VERTICAL DESIGN I

Equations:

$$I = F_t * t$$
$$F_t = \frac{I}{t}$$
$$F_x = F_t * \cos(\theta)$$
$$F_{fs} = F_R * \mu$$

Given:

Impulse (I) = 5120.00 N-sec Burn Time (t) = 4 sec Gravitational Acceleration (g) = 9.80665 m/s^2 Coefficient of Static Friction (μ) = 0.56

Find:

Solution:

Case A: Reaction Forces Present in an ideal motor test (perfectly vertical)

Case A

1280.00N

1280.00N

Case B

1280.00N

1260.55 N

222.27 N

-222.27 N

F.

 F_t

 F_R

 F_{χ}

 F_{fs}

Case B: Reaction forces present in a scenario where motor is not perfectly mounted (10 degrees from vertical).

Coefficient of Static Friction (μ) must be greater than 0.176 to keep the design still

CONCEPT GENERATION ~VERTICAL TEST STAND DESIGN 2

Design Features:

- Motor secured with 6 bearings
- Bearing mounts can be altered to secure multiple motor diameters

Rocket motor Load cell

Disadvantages:

- Building would require differently sized extrusions
- Motor is held in place from 3 angles instead of 4

ENGINEERING CALCULATIONS ~ VERTICAL DESIGN

Equations:

 $I = F_t * t$ $F_t = \frac{I}{t}$ $F_x = F_t * \cos(\theta)$

Find:

Case A: Reaction Forces Present in an ideal motor test (perfectly vertical) Case B: Reaction forces present in a scenario where motor is not perfectly mounted (10 degrees from vertical).

FR

Andrew 10/9 Rocket Propulsion Team 3

Given:

Impulse (I) = 5120.00 N-sec Burn Time (t) = 4 sec Angle = 10 degrees

(Assume frictionless surface)

CONCEPT GENERATION ~ VERTICAL TEST STAND DESIGN 3

Design Features:

- Securely holds load cell
- Forces are distributed into ground
- Attaches at multiple points
- Points of contact are low friction
- Adjustable top allow for different diameters and heights
- Simple to build
- Structurally stable

Figure 8: Propulsion Test Source: BPS Space [7]

Disadvantages:

- Must account for gravity in calculations
- Must design and build specialty part to hold load cell

ENGINEERING CALCULATIONS ~ VERTICAL DESIGN 3

- × The maximum force applied to the load cell is 5120 N*s of impulse, or 287.8 lbf of thrust.
- × By applying this force in the -Y direction to the load cell:
 - Largest stress is 381.7 psi
- × Must reinforce plate and load cell to support 381.7 psi * Factor of Safety
- × Assuming a F.O.S. of 1.5:
 - + 381.7psi * 1.5 = 572.6 psi
- × Must design the load cell support structure and plate to withstand 572.6 psi
- × The thrust forces can dissipate through the ground once moving through the plate
 - + This allows the rest of the structure to not experience the forces of the motor, reducing modes of failure

CONCEPT GENERATION ~ HORIZONTAL TEST STAND I

Design Features:

- Mounting blocks to ensure stability
- Gravity is negligible
- Load cell is mounted to plate
- No need to build load cell holder
- Allows for all diameters

Disadvantages:

- Friction between clamps and motor
- Large forces on plate and supports
- Must be a certain height

ENGINEERING CALCULATIONS ~ HORIZONTAL DESIGN I

Shannon 10/9

Rocket

Propulsion Team 3

- Based on the shear force and bending moment diagram, the greatest stress will occur at point B. Therefore, this design may be more likely for failure since member EB would need to be greatly reinforced.
- The required design must account for max stress:
 - Assuming F.O.S= 1.5
 - 409.8 lbf * 1.5 =614.7 lbf

CONCEPT GENERATION ~ HORIZONTAL TEST STAND 2

Design Features:

- Friction is negligible
- Gravity is negligible
- Simple to build
- Cost efficient

Disadvantages:

- Less contact with motor
- High stress points
- More likely to fail

ENGINEERING CALCULATIONS ~ HORIZONTAL DESIGN 2

- Applying 287.8 lbf in the –X direction to the motor casing mount:
 - Force max is 488.5 psi
 - Would require multiple steel plates supporting the back wall
 - More likely to failure
 - More likely for fatigue and deformation

- Assuming F.O.S of 1.5:
 - 488.5psi * 1.5 = 732.8 psi
 - Must design back plate to withstand 732.8 psi

CONCEPT GENERATION ~ HORIZONTAL TEST STAND DESIGN 3

Design Features:

- Motor is mounted to linear bearing
- Easy to build, yet rigid structure using aluminum extrusion
- Base plate to provide support to load cell

Disadvantages:

- Must be secured to a hard immovable surface
 - This would significantly increase our project cost

Andrew 10/9 Rocket ropulsion Team 3

• The mounting bolts must be able to resist the thrust force

ENGINEERING CALCULATION ~ HORIZONTAL DESIGN 3

Equations: Given: $I = F_t * t$ Impulse (I) = 5120.00 N-sec Burn Time (t) = 4 sec $F_t = \frac{1}{t}$ $\sum M = 0$ $\sum F_x = 0$ →× $\sum F_{y} = 0$ F_t Force Force (N) 0.3 m 1280 F_t MA F_{Ax} 1280 FAX F_{Ay} 320 1.2 m F_{By} 320

CONCEPT EVALUATION

		DATUM	Option 1	Option 2	Option 3	Option 4	Option 5	Option 6
Criteria	Weight	A		all baring				A RU
Reach minimum altitude	2		0	0	0	0	0	0
Stay within Budget for the Project	2		+++	++	+	-	-	0
Dimensions meet constraints of rocket size	3	D		++	+++		0	+++
Stand withstands impulse of rocket testing	2	Α		+	++	+++	++	+
Meet Minimum Thrust to Weight Ratio Set by Tripoli	3	Т	0	0	0	0	0	0
Complete final launch by march 2024	2	U	0	0	0	0	0	0
Non-Ferrous, Ductile Casings	3	М	0	0	0	0	0	0
+			6	12	15	6	4	11
0		17	4	4	4	4	5	4
-			13	0	0	8	2	0
TOTAL		0	-7	12	15	-2	2	11

CONCEPT SELECTION: TEST STAND CAD MODEL

SCHEDULE

P	roject Start:	09/0	4/23	05/06/24																								
Di	splay Week:	1			4 Sep 20	23	11 Sep	2023	18 Se	ep 2023	25	5 Sep 2023		2 Oct 20	023	9	Oct 2023	3	16 Oc	t 2023		23 Oct 2	2023	30	0 Oct 20	23	6 No	ov 2023
				_	456	7891	0 11 12 13	3 14 15 16 1	17 18 19 2	20 21 22 2	3 24 25 2	26 27 28 29	9301	234	567	89	10 11 12	13 14 15	16 17 1	.8 19 20	21 22 2	23 24 25	26 27 28	29 30	31 1 2	345	67	8 9 10 1
PROGRESS	PROGRESS	START	END	Focal	мтw	T F S S	S M T W	/ T F S	S M T	WTFS	S S M	TWTF	S S	мтw	TFS	sм	т w т	FSS	мт	NTF	S S N	мтw	TFS	SM	TW	FSS	мт	WTF
Project Plan																												
Develop Project Plan	100%	09/05/23	10/02/23																									
Develop Project Schedule	100%	09/11/23	09/23/23																									
Develop Project Budget	85%	09/15/23	10/02/23																									
Develop and Complete Presentation 1	100%	09/11/23	09/22/23																									
Research																												
Nozzle	30%	09/05/23	10/02/23																									
Propellant	50%	09/05/23	10/02/23																									
Test Stand	75%	09/05/23	10/02/23																									
Presentation 2	95%	09/25/23	10/09/23	10/13/23																								
Report 1	15%	09/30/23	10/27/23	10/27/23																								
Website Check	5%	09/30/23	10/27/23	10/27/23																								
Design and Build																												
Initial Design	80%	09/18/23	10/12/23																									
Initial Design Review	0%	10/12/23	10/12/23																									
Re-Design and Modify 1	0%	10/12/23	10/19/23																									
Design Approval 1	0%	10/19/23	10/19/23																									
Create BOM	20%	09/18/23	10/19/23																									
Test 1	0%	11/04/23	11/04/23																									
1st Protoype Paper	0%	11/04/23	11/10/23																									
Presentation 3	0%	10/23/23	11/06/23	10/10/23																								

Income			Expected Expenses		Actual Exp	enses To-Date	
Source	Amount	Subsystem	Products Needed	Amount	Item Bought	Cost	
Gore Fund	2000	Nozzle	Graphite	125			
Go Fund Me	350		Steel	150			Note: all red funds can only be used for specific things
Undergrad Research	700		Lathe	450			
		Casing	Prototype Casings	25			
			Retaining Rings	40			
			Material for Final Casing	100			
		Test Stand	Steel Tubing	50			
			Aluminum Stock	50			
			Connectors	50			
			Bearings or Wheels	100			
EE Team	500	Test Stand Electronics	Load Cell	300			
			Arduino	50			
			Other EE Components	525			
		Test Rocket Motors	Ammonium Perchlorate	200			
			Aluminum Powder	100			
			Binder	150			
			Additives	75			
			Fuses	15			
		75mm Final Motor	Ammonium Perchlorate	250			
			Aluminum Powder	125			
			Binder	175			
			Additives	100			
			Fuses	15			
		PPE	Gloves	10			
			Eye Protection	5			
			Resperators	60			
Total	3550			3220			o

CURRENT BILL OF MATERIALS

Subsection	Material	Description / Justification	Quantity
Propellant	Ammonium Perchlorate	Oxidiser	1 Unit
	Aluminum Powder	Fuel	1 Unit
	Hydroxyl Terminated Polybutadiene (or other binder)	Propellant binder	1 Unit
	other additives depend on the properties of the specific propellant combination		1 Unit
	(show exact type of motor formula) Chris's rocket supply		
	(research capstone teams rocket designs, other universities)		
Potential:	Fuse for lighting (Carsons fuses or E-matches)		1

Subsection	Material	Description / Justification	Quantity
Test Stand	Steel 16 gauge tubing for structure of stand		4
	20mm x 40mm aluminum extrustion for the rocket sled		2
	6mm eccenteic spacer for attaching gantry to rail		8
	Solid V-Wheel for proper sliding of the gantry sled		8
	Misc. Parts for assembly along with welding		variable
	Circular aluminum stock (4in diameter, foot long), For rocket motor clamps		1
Potential:	Load Cell (loadcell jeff has)		1
	Arduino		1
	EE Equipment for data collection		

CURRENT BILL OF MATERIALS: (CONTINUED)

Subsection	Material	Description / Justification	Quantity
Nozzle	Lathe	To machine graphite insert	1
	1018 Cold Finish Steel Round	(2 3/4" dia, 24" length), for full scale	1
	Isomolded Graphite Rod	(1.5" x 24"), to be machined into inserts f	1
	Isomolded Graphite Plate	(4"x4"x1") aerospike outer insert	1
	O-rings		

Subsection	Material	Description / Justification	Quantity
Casing	16-Series Aluminum Tubing; Inner Lining: Likely carbon fiber		1
	Prototype Casing (38mm small casing) (paper towel cardboard tube)		1
	75 mm Retaining Rings		2
	(look at DPS's casing)		

IMAGE CITATIONS

• [1] "High-power rocketry," Wikipedia, <u>https://en.wikipedia.org/wiki/High-</u>

power_rocketry#/media/File:A_glorious_launch_of_my_Red_Mongoose_rocket_to_Mach_1.4_(52387748282).jpg (accessed Sep. 17, 2023).

- [2] "APCP solid propulsion development," Brandon Fallon, <u>https://brandonfallon.com/apcp-solid-propulsion-development/</u> (accessed Sep. 17, 2023).
- [3] J. Zimmer, "Launch rockets with the University of Minnesota Duluth Rocketry Team," NASAs Minnesota Space Grant Consortium, https://www.mnspacegrant.org/launch-rockets-with-umn-duluth/ (accessed Oct. 8, 2023).
- [4] S. Erwin, "Air Force's rocket propulsion arm looking to invest in technologies for 'responsive launch," SpaceNews, https://spacenews.com/air-forcesrocket-propulsion-arm-looking-to-invest-in-technologies-for-responsive-launch/ (accessed Oct. 7, 2023).
- [5] "Mobile test stand," Rice Eclipse, http://eclipse.rice.edu/mobile-test-stand (accessed Oct. 7, 2023).
- [6] "54/2000 aft finocyl K616," YouTube, https://www.youtube.com/watch?app=desktop&v=bp4o7TBjRgA (accessed Oct. 7, 2023).
- [7] "Building a rocket motor test stand simplex EP 5," You Tube,
- https://www.youtube.com/watch?v=iTzKEmW2s-k (accessed Oct. 7, 2023).

RESEARCH CITATIONS

- × [8] https://brandonfallon.com/apcp-solid-propulsion-development/
- [9]https://www.rocketmotorparts.com/details/p1577809_20627885.aspx#:~:text=75mm%20Nozzle%2C%200.485%22%20Throat%
 20Summary&text=Dimensions%3A,2.730%22%20O.D.
- × [11] "Solid Rocket Motor Theory -- GUIPEP," Richard Nakka's Experimental Rocketry Site, <u>https://www.nakka-rocketry.net/th_imp.html</u> (accessed Oct. 12, 2023).

THANK YOU!

ANY QUESTIONS?