Modular Sterile Manufacturing Cleanroom

Logan Bennett Michelle Borzick Gia Neve Aaron Reynoza

Background

• Description of project: Create a modular ISO Class 7 cleanroom with fan filter unit (FFU). Convert current cleanroom into a gowning room.

• Clients/sponsors:

Timothy Becker

Aneuvas Technologies Inc

- Purpose of Cleanroom:
 - Manufacturing of medical devices in a sterile environment

Black Box and Functional Model

Figure 1: FFU Black Box Model

Figure 2: Cleanroom Black Box Model

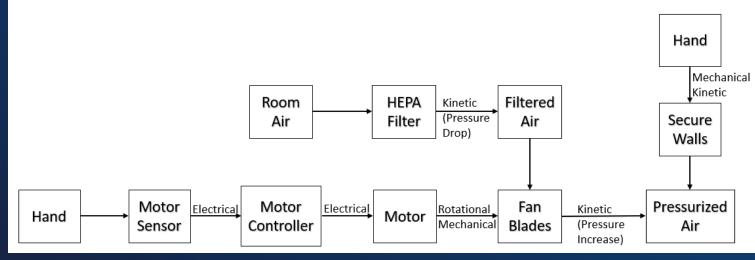


Figure 3: Functional Model

Michelle Borzick, 10-9-23, Modular Sterile Manufacturing Clean Room

Concept Generation: Morphological Matrix

[1] - [10]

Table 1: Morphological Matrix

Subfunctions		Concept V	Variants	
Frame Connections	Square Tubing Nylon Connectors	T-Slots (80/20)	Welded	Screwed Joints
Material Connections	Magnets	Adhesive	Slide in Frames	Screws
Wall/Ceiling Material	All Vinyl Soft Wall	All Polycarbonate Hard Wall	Polycarbonate Walls with Vinyl Ceiling	Vinyl Walls with Polycarbonate Ceiling
Fan Number/Locations	1 Centered Fan	2 Off-Center Fans	2 Corner Fans	
Frame Size	10x10	12x8		-

Subfunctions:

- 1. Frame Connections
- 2. Material Connections
- 3. Wall/Ceiling Material
- 4. Fan Number/Location
- 5. Frame Size

Logan Bennett, 10-9-23, Modular Sterile Manufacturing Clean Room

Frame Connections:

-Connections between frames

-Must be able to handle Shear and Flexural forces

-Must be easy to assemble and disassemble

	Material	Yield Strength	Tensile Strength	Modulus of Elasticity	Default Price	Machining/Extra price
Wield	6005A - T61*	21000	19500	10 x 10^6	-	18 per lb
Telescoping	Nylon	5800	11500	450000	4	0
Joint Screw	Stainless steel	30000	75000	28 x 10^6	12	3.5
80/20 T Slots	6005A - T61	43000	39000	10 x 10^6	5 to 30	3 to 20
Units	-	(Psi)	(Psi)	(Psi)	(Usd)	(Usd)

Figure 4: Spec Sheet for Frame Connections

Table 2: Frame Connections Advantages/Disadvantages

Frame Connections	Advantages	Disadvantages
Square Tubing Nylon Connectors	-Very modular -Inexpensive -Allows strong structure stability	-Requires altering frame -require specific design for different types of connections -weak connection material for yield and shear strength
T-Slots (80/20)	-Very modular -Allows many connection types - Strong connections between frames	-Expensive - Requires many components for connections -Not effective against external forces
Welded	-Creates permanent fixtures -No extra components required - Allows for strong connections	-Does not allow modularity -Expensive -Quality of wield can affect stability
Screwed Joints	-Inexpensive -Parts are replaceable - Can be assembled/disassembled easily.	-Requires milling for frame and joint -Takes up space which effects other parts -Require many components for connections

Aaron Reynoza, 10-9-23, Modular Sterile Manufacturing Clean Room

Frame Connections:

Shear Flow Calculation

$$\tau max = \frac{V * Q}{I * t}$$

$$Q = (48in)*(1.5in)*(44.25in) = 3186in^{3}$$

$$100lbs = 3.02lbf$$

$$Vmax = 3.02lbf$$

$$I = \frac{51*90^{3}}{12}in^{4} - \frac{48*87^{3}}{12}in^{4} = 6523.75in^{4}$$

$$t = \frac{1.5in}{2} = 0.75in$$

 $\tau max = 1.96 psi$

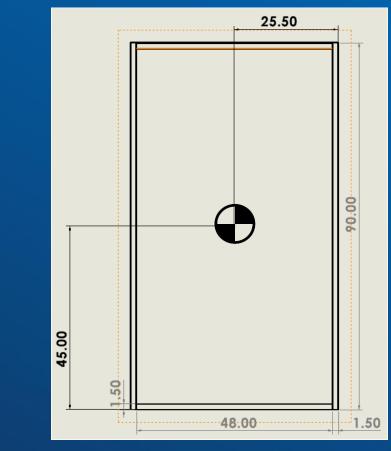


Figure 5: Surface area of frame with Centre of Gravity

Tmax = Max Torsion	Q = 1st Moment Area
	•
Vmax = Max Shear	t = Width Across Section
I = Moment of Inertia	

Aaron Reynoza, 10-9-23, Modular Sterile Manufacturing Clean Room

Frame Connections:

Selection Criteria: **1. Modularity**: How easy it is to Assemble, Disassemble 2. Price: Price of connection **3. Yield Strength:** Highest amount of stress without permanent deformation 4. Interference: If connections size will interfere with others

5. Small Quantity: Number of extra parts required for connection

6. Ease of use: How easy it is to Assemble/Disassemble7. Stability: How stable the frame can be.

Table 3:	Frame	Connections	Decision	Matrix

		CV 80/20 T-S	CV 80/20 T-Slot		CV Square tubing Connector		V Screw Joints	
Selection Criteria	Weight (%)		Weighted Score		Weighted Score		Weighted Score	
Modularity	15	3	.45	3	.45	2	.30	
Price	50	1	.50	3	1.50	2	1.00	
Yield Strength	10	2	.20	1	.10	3	.30	
Stability	10	1	.10	3	.30	3	.30	
Interference	5	3	.15	3	.15	1	.05	
Small quantity	5	1	.05	3	.15	1	.05	
Ease of Use	5	2	.10	3	.15	2	.10	
Total	100	13	1.55	18	2.80	14	2.1	

Aaron Reynoza, 10-9-23, Modular Sterile Manufacturing Clean Room

Material Connections:

- Material connections are how the walls will be attached to the frame
- Hard wall weight: 9.5lbs
- Soft wall weight: 9.75lbs

Table 6: Material Connections Advantages/Disadvantages

Material Connections	Advantages	Disadvantages
Magnets	- Inexpensive	 Adhesive connection degrades over time Adhesive residue on frame Shifting of vinyl/ polycarbonate panels could cause disconnection
Adhesive	- Inexpensive	 Particulation Off-gases Strength degrades over time Shifting of vinyl/polycarbonate panels could cause disconnection Collects particulates
Slide in Frames	 High modularity – easy to assemble and disassemble Strong connection 	- Only works with t-slots. Would have to modify other frame material to accommodate
Screws	 Inexpensive Strong connection High modularity – easy to assemble and disassemble 	-Could cause tearing of vinyl/cracking of polycarbonate panels

Logan Bennett, 10-9-23, Modular Sterile Manufacturing Clean Room

Material Connections:

Criteria **1. Durability**: life expectancy in years 2. Modularity: ease of changing configuration/assembly 3. Strength: Strength of connection in lbs 4. Seal Tightness: gas loss in in^3/s **5.** Aesthetic: subjective and unmeasurable

Table 5: Measurable Criteria per Variant. (Seal tightness not yet tested)

Criteria	Magnets	Adhesive	Screws	Slots
Durability hard-walled (years)	Indefinite	Indefinite	Indefinite	Indefinite
Durability soft-walled (years)	3-5	Indefinite	Indefinite	Indefinite
Strength (lbs)	10.84	45900	21875	17500
Seal Tightness (in^3/s)	8.72	-		-

Strength of magnets[3] Strength and durability of Adhesives[5] Strength of Aluminum/screws[4]

Table 7: Decision Matrix for Material Connections

		Magnets		Adhesive		Screws		Slots	
Selection Criteria	Weight	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted
	(%)		Score		Score		Score		Score
Durability	25	1	0.25	2	0.5	3	0.75	3	0.75
Modularity	25	2	0.5	1	0.25	3	0.75	3	0.75
Strength	20	1	0.2	2	0.2	3	0.6	3	0.6
Seal Tightness	20	2	0.4	2	0.2	3	0.6	3	0.6
Aesthetics	10	1	0.1	2	0.2	2	0.2	3	0.3
Total	100		1.45		1.35		2.9		3.0

Slotted connections would best fit the criteria, however, require the use of 80/20 T-slots in the "Frame connection" subfunction

Logan Bennett, 10-9-23, Modular Sterile Manufacturing Clean Room

Wall Material:

Soft Wall Vs Hard Wall Materials

- Off-gassing: release of a dissolved, trapped, or absorbed gas in a material
- VOCs: Volatile Organic Compounds

Cost Analysis:

- Vinyl: ~\$200
- Polycarbonate for 10x10 and 12x8: \$1774.49

Table 8: Wall Material Advantages/Disadvantages

Wall/Ceiling Material	Advantages	Disadvantages
Vinyl Soft Wall/Ceiling	- Inexpensive	 Contains VOCS Increased air leakage Deteriorates over time Less modular than polycarbonate
Polycarbonate Hard Wall/Ceiling	-Client preferred - Less air leakage - Longer life span - More professional appearance	- More expensive

Gia Neve, 10-9-23, Modular Sterile Manufacturing Clean Room

Wall Material:

Vinyl Longevity:

Figures 6-8: Current Vinyl Cleanroom

Gia Neve, 10-9-23, Modular Sterile Manufacturing Clean Room

Wall Material:

Criteria:

 Cost: price of all wall material for 10x10 or 12x8 configuration
 Customer Preference
 VOCS

4. Longevity

Table 9: Frame Size Decision Matrix

		Hard Wa	ll (Polycarbonate)	Soft Wal	l (Vinyl)
Selection Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score
Cost	30	2	0.15	3	0.9
Customer preference	30	3	0.9	1	0.3
VOCS	20	2	0.4	1	0.2
Longevity	20	3	0.6	2	0.4
Total	100		2.05		1.8

Frame size:

Cost Analysis:

Table 10: Frame Cost Analysis

Cost Breakdown				
	12x8	10x10		
Framing	\$1,661.14	\$1,649.39		
Connectors	\$305.53	\$431.82		
Wall Material	\$1,561.75	\$1,561.75		
Total	\$3,528.42	\$3,642.96		

- Framing: 80/20 Aluminum Square tubing
 Connectors: Estos Nylon injection molding connectors
- Wall Material: Eplastics 1/16th inch 48"x96" poly carbonate sheets

□ Prices include Tax and Shipping estimations

Table 11: Frame Size Advantages/Disadvantages

Frame Size	Advantages	Disadvantages	
10x10	- Direct customer request - Total area of 100 square feet of floor space	-Unevenly spaced support beams will require additional material cutting	
12x8	 Evenly spaced bars will require no material cutting Uses same material requirements as 10x10 Symmetrical design requires less assembly time 	- Less total area - 96 square feet of floor space	

Table 12: Frame Size Decision Matrix

		12x8		10x10	
Selection Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score
Cost	35	3	1.05	2	.7
Manufacturing ability	40	3	1.2	2	.8
Customer preference	20	3	.6	3	.6
Aesthetics	5	3	.15	2	.1
Total	100		3		2.2

Gia Neve, 10-9-23, Modular Sterile Manufacturing Clean Room

Fan Number:

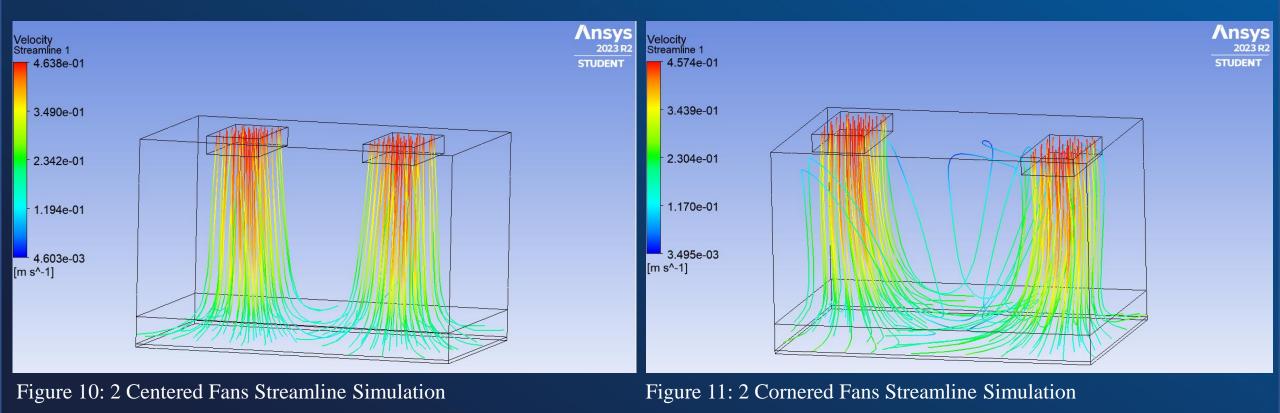
Table 13: Fan Number/Location Concept Variants

Fan Number/Location	Advantages	Disadvantages						
1 Centered Fan	- Less expensive - Less turbulent air flow	- Does not meet ISO7 filter fan unit ceiling coverage requirement						
2 Off-Center Fans	 Meets ISO7 filter fan unit ceiling coverage requirement Most stable ceiling frame configuration Less turbulent air flow 	- More expensive than 1 fan						
2 Corner Fans	- Meets ISO7 filter fan unit ceiling coverage requirement	 More expensive than 1 fan Less stable ceiling frame configuration More turbulent air flow 						

		1.000
SO	Air Changes	Ceiling
Class	Per Hour	Coverage
501	500-750	80-100%
50.2	500-750	80-100%
503	500-750	60-100%
50.4	400-750	50-90%
SO 5	240-600	35-70%
50.6	150-240	25-40%
507	60-150	15-25%
ISO 8	5-60	5-15%

Figure 9: ISO Ceiling Coverage Requirements

 $Ceiling \ Coverage = \frac{Area \ FFUs}{Area \ Cleanroom \ Ceiling}$


Ceiling Coverage 1 Fan = $\frac{2x4}{12x8}$ = 8.33%

Ceiling Coverage 2 Fans = $\frac{2(2x4)}{12x8}$ = 16.67%

Michelle Borzick, 10-9-23, Modular Sterile Manufacturing Clean Room

Fan Locations:

- Ansys Fluent CFD Analysis:
 - Reynold's Number Outputs:
 - Centered Fans: 3441.3 (Transitional flow)
 - Cornered Fans: 3703.6 (Turbulent flow)

Michelle Borzick, 10-9-23, Modular Sterile Manufacturing Clean Room

Fan Number and Location:

Structural Load Analysis:

2 Centered Fans								
Material geometry	Moment of inertia (in^4)	Max bending stress (psi)	Factor of Safety					
Tube	.2127	3966.9	8.823					
T-slot S	.2631	3207.0	10.91					
T-slot L	.1921	4392.2	7.969					
T-slot UL	.1765	4780.5	7.321					

Figure 12: Centered Fan Load Analysis

2 Cornered Fans								
Material geometry	Moment of inertia(in^4)	Max bending stress (psi)	Factor of Safety					
Tube	.2127	2820.9	12.41					
T-slot S	.2631	2280.5	15.35					
T-slot L	.1921	3123.4	11.21					
T-slot UL	.1765	3399.4	10.30					

Figure 13: Cornered Fan Load Analysis

c = 1.5in $M_{Max} = F * L$ $\sigma_{max} = \frac{Mc}{l}$ $\sigma_{max} = 3966.9psi$ $V_{max} = 50lb$

 $I = .2127 in^4$

L = 22.5in

F = 50 lbs

Particle Count Analysis: Whisper Flow Filter Specifications:

- MERV 7 Pre-Filter: 50% efficiency at $3\mu m$
- HEPA Filter: 99.99% efficiency at $0.3\mu m$

	Maximum Number of Particles in Air (Particles per cubic meter)									
150	Fed-Std		Particle Size							
ISO Class	209E Class	≥ 0.1µm	≥ 0.2µm	≥ 0.3µm	≥ 0.5µm	≥1µm	≥ 5µm			
ISO 1		10	2							
ISO 2		100	24	10	4					
ISO 3	(Class 1)	1,000	237	102	35	8				
ISO 4	(Class 10)	10,000	2,370	1,020	352	83				
ISO 5	(Class 100)	100,000	23,700	10,200	3,520	832	29			
1506	(Class 1,000)	1,000,000	237,000	102,000	35,200	8,320	293			
1507	(Class 10,000)				352,000	83,200	2,930			
1508	(Class 100,000)				3,520,000	832,000	29,300			

Figure 14: Cleanroom Particle Count Requirements

Fan Number and Location:

Criteria:

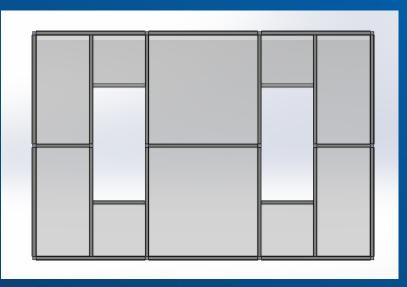

- 1. Cost: price of FFU in dollars
- 2. Flow Distribution: type of flow (Reynolds Number)
- 3. Structural Load: Max bending stress and Factor of Safety
- 4. Particle count: μm

Table 14: Fan Number/Location Decision Matrix

		2 Fans Off-Center		2 Fans Cornered		
Selection Criteria	Weight	Score	Weighted	Score	Weighted	
	(%)		Score		Score	
Cost	5	2	0.1	2	0.1	
Flow Distribution	35	3	1.05	2	0.7	
Structural Load	20	2	0.4	3	0.6	
Particle Count	40	3	1.2	3	1.2	
Total	100	2.75			2.6	

Final Concept:

- Final Design:
 - Square tubing Nylon connections
 - 1.5"x1.5" aluminum tube frame
 - Walls secured with screws
 - Hard polycarbonate walls
 - 2 centered fan locations
- The frame and material connections provide the strongest and most modular design
- Hard polycarbonate walls for durability and professional look
- 2 fans are required to meet ISO class
 7 standards, centered to keep
 transitional flow

Figure 15: CAD Top View

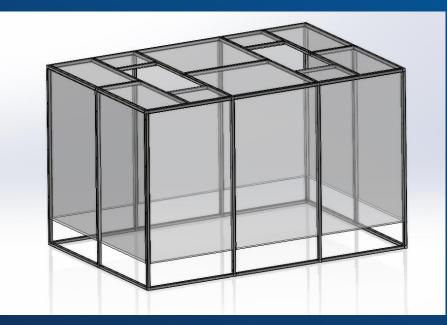


Figure 16: Isometric View

Gia Neve, 10-9-23, Modular Sterile Manufacturing Clean Room

Schedule:

ASK	ASSIGNED TO	PROGRESS	START	END
Concept Evaluation - Charts		100%	9/19/23	10/8/23
Concept Evaluation - Design Summary	·	100%	9/19/23	10/8/23
Concept Evaluation - CAD		100%	9/19/23	10/8/23
Schedule - Gantt Chart		100%	9/19/23	10/8/23
Budget		100%	9/19/23	10/1/23
Bill of Materials		100%	9/19/23	10/8/23
Report 1				
Executive Summary		0%	10/10/23	10/27/23
Background		90%	10/10/23	10/27/23
Requirements		90%	10/10/23	10/27/23
Research Within Design Space		80%	10/10/23	10/27/23
Design Concepts		100%	10/10/23	10/27/23
Conclusion		0%	10/10/23	10/27/23
Prototype 1				
CAD		95%	10/10/23	11/6/23
3D Printed Components		0%	10/10/23	11/6/23
Non-3D Printed Components		0%	10/10/23	11/6/23

Figure 17: Gantt Chart

Michelle Borzick, 10-9-23, Modular Sterile Manufacturing Clean Room

Current Budget : \$5K - \$10K

Projected Expenses: \$7K

60% - Materials (Aluminum tubing)
20% - FFU
15% - Backup Battery
5% - Prototyping

10% Fundraising: Reach out to other departments and teams who will use the cleanroom (No Update yet)

Table 15: Bill of Materials

					BOM					
	Part #	Part Name	Qty	Description	Functions	Material	Dimensions	Cost per unit	Total Cost	Link to cost estimate
	1	Aluminum square tubing	29	Frame material		Aluminum	1.5"x 1.5" -46"			
	2	Aluminum square tubing	10	Frame material		Aluminum	1.5"x 1.5" -87"			
	3	Aluminum square tubing	4	Frame material		Aluminum	1.5"x1.5"-22"			
	4	Aluminum square tubing	2	Frame material		Aluminum	1.5"x 1.5"-22.5"	\$0.49 per inch	\$1,661.14	https://8020.net/9700.html
										https://estoconnectors.com
	5	1.5" Straight Base connector	10	Frame connector	Connects frame	Nylon/Black	1.5"	\$6.65		/product/5323150/
										https://estoconnectors.com
	6	1.5" 3-way Tee Connector	10	Frame connector	Connects frame	Nylon/Black	1.5"	\$8.93		/product/532150/
										https://estoconnectors.com
	7	1.5" 3-way Corner Connector	8	Frame connector	Connects frame	Nylon/Black	1.5"	\$8.93		/product/533150/
										https://estoconnectors.com
	8	1.5" 4-way Corner Connector	6	Frame Connector	Connects frame	Nylon/Black	1.5"	\$9.98	\$305.53	/product/545150/
					Covers 12x8					https://www.eplastics.com
					frame and 6x8					/LEXAN-CLR-0-
	9	Polycarbonate sheets	19	Wall material	frame	Polycarbonate	1/16"x48"x96"	\$67.41	\$1,774.49	060AM48X96?quantity=19
										https://www.terrauniversal
					Filters air within	Poweder				.com/whisperflow-fan-
	10	FFU	2	Filter fan unit	the room	coated steel	2'x4'	\$1,152	\$2,304.00	filter-units.html
Total									\$6,045.16	

References

[1] "Modular Softwall Cleanrooms: Cleanroom design," Modular Cleanrooms | Cleanroom Design and Installation, https://modularcleanrooms.com/cleanrooms/softwall/ (accessed Oct. 7, 2023).

[2] "Washer head screws for polycarbonate," Charley's Greenhouse & Garden, https://charleysgh.com/products/washer-head-screws-1-1-2-for-6mm-8mm-poly-capping (accessed Oct. 7, 2023).

[3] "Cleanroom; Hardwall, modular, polycarbonate panels, powder-coated steel frame," 6600-64A, https://www.terrauniversal.com/cleanroom-hardwall-modular-polycarbonate-panels-powder-coated-steel-frame-6600-64a.html (accessed Oct. 7, 2023).

[4] "Installation accessories for polycarbonate sheets and Systems," Installation Accessories for Polycarbonate Sheets and Systems - ePlast.com,

https://www.eplast.com/accessories.html (accessed Oct. 7, 2023).

[5] "Installation accessories for polycarbonate sheets and Systems," Installation Accessories for Polycarbonate Sheets and Systems - ePlast.com,

https://www.eplast.com/accessories.html (accessed Oct. 7, 2023).

[6] "Master magnet 1 in. x 10 ft. Magnetic Tape 97284," The Home Depot, https://www.homedepot.com/p/Master-Magnet-1-in-x-10-ft-Magnetic-Tape-97284/206503475 (accessed Oct. 7, 2023).

[7] "Products," Testrite Instrument Co., Inc., https://www.testriteoem.com/products/1-square-tubing-system-build-a-stand/ (accessed Oct. 7, 2023).

[8] "Parco T-slotted aluminum extrusion products," Torpey Denver, https://torpeydenver.com/parco-80-20-framing-system/ (accessed Oct. 7, 2023).

[9] "Powder-coated square tubing table frame," EnduraSteel Stainless Steel Tables, https://www.endurasteel.com/products/powder-coated-tables/powder-coated-square-tubing-table-frame/%C2%A0 (accessed Oct. 7, 2023).

[10] "6061-T6 heavy wall telescopic square tubing," Alcobra Metals, https://alcobrametals.com/telescopic-tubing/6061-t6-heavy-wall-telescopic-square-tubing/ (accessed Oct. 7, 2023).

[11] J. Maes, "Does Welding Aluminum Weaken It?," Make it From Metal. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://makeitfrommetal.com/does-welding-aluminum-weaken-it/</u>

[12] "Overview of materials for Nylon 6, Cast." Accessed: Oct. 09, 2023. [Online]. Available:

https://www.matweb.com/search/DataSheet.aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1&ckck=1

[13] "18/8 Stainless Steel, Grade 18-8 SS Properties & Meani https://www.homedepot.com/p/Master-Magnet-1-in-x-10-ft-Magnetic-Tape-97284/206503475

ng," 304 Stainless Steel. Accessed: Oct. 09, 2023. [Online]. Available: https://304stainlesssteel.org/18-8-stainless-steel/

[14] "6005A-T61 Aluminum :: MakeItFrom.com," MakeItFrom.com. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://www.makeitfrom.com/material-properties/6005A-T61-Aluminum</u>

[15] US Magnetix, "Magnet pull force: Measure strength of magnet: Magnets holding power," Industrial and Promotional Magnets, <u>https://usmagnetix.com/magnet-pull-force-how-much-weight-can-a-magnet-hold/</u> (accessed Oct. 9, 2023).

References

[16] 80/20 inc., "80/20 aluminum T-slot building systems: 80/20 aluminum extrusions," 80/20 Inc., https://8020.net/ (accessed Oct. 9, 2023).

[17] Loctite, "PL® premium construction adhesive - dm.henkel-dam.com," Loctite construction adhesive technical data sheet, <u>https://dm.henkel-dam.com/is/content/henkel/tds-us-loctite-loc-pl-premium-3x-2019-12-12</u> (accessed Oct. 9, 2023).

[18] J. Maes, "Does Welding Aluminum Weaken It?," Make it From Metal. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://makeitfrommetal.com/does-welding-aluminum-weaken-it/</u>

[19] "Overview of materials for Nylon 6, Cast." Accessed: Oct. 09, 2023. [Online]. Available:

https://www.matweb.com/search/DataSheet.aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1&ckck=1

[20] "18/8 Stainless Steel, Grade 18-8 SS Properties & Meaning," 304 Stainless Steel. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://304stainlesssteel.org/18-8-stainless-steel/</u>
 [21] "6005A-T61 Aluminum :: MakeItFrom.com," MakeItFrom.com. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://www.makeitfrom.com/material-properties/6005A-T61-Aluminum</u>

[22] "6061-T6 heavy wall telescopic square tubing," Alcobra Metals, https://alcobrametals.com/telescopic-tubing/6061-t6-heavy-wall-telescopic-square-tubing/ (accessed Oct. 7, 2023).

[23] "6061-T6 heavy wall telescopic square tubing," Alcobra Metals, https://alcobrametals.com/telescopic-tubing/6061-t6-heavy-wall-telescopic-square-tubing/ (accessed Oct. 7, 2023).

THANK YOU!

