Modular Sterile Manufacturing Clean Room

Logan Bennett Michelle Borzick Gia Neve Aaron Reynoza

Project Description

 Description of project: Create a 10x10 modular cleanroom and fan filter unit (FFU) design while converting the current cleanroom into a gowning room.

• Clients/sponsors:

Timothy Becker

David Willy

Aneuvas Technologies Inc

• Why is it important: Increases Dr. Becker manufacturing compacity which will save more lives and can be access by more students.

Aaron Reynoza, 9-18-23, Modular Sterile Manufacturing Clean Room

Background

What is a cleanroom? What is a Filter Fan Unit (FFU)?
Cleanroom Levels: ISO Class 7

Recomme	ended Air Changes ar	nd Ceiling Coverage
ISO	Air Changes	Ceiling
Class	Per Hour	Coverage
ISO 1	500-750	80-100%
ISO 2	500-750	80-100%
ISO 3	500-750	60-100%
ISO 4	400-750	50-90%
ISO 5	240-600	35-70%
ISO 6	150-240	25-40%
ISO 7	60-150	15-25%
ISO 8	5-60	5-15%

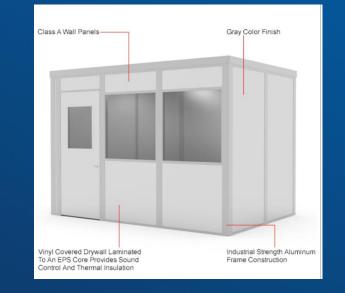
Fig. 1: Air Change and Ceiling Coverage Requirements

		Maxir	Particles pe	er of Partic r cubic meter						
150	Fed-Std		Particle Size							
ISO Class	209E Class	≥ 0.1µm	≥ 0.2µm	≥ 0.3µm	≥ 0.5µm	≥1µm	≥ 5µm			
ISO 1		10	2							
ISO 2		100	24	10	4					
ISO 3	(Class 1)	1,000	237	102	35	8				
1504	(Class 10)	10,000	2,370	1,020	352	83				
ISO 5	(Class 100)	100,000	23,700	10,200	3,520	832	29			
1506	(Class 1,000)	1,000,000	237,000	102,000	35,200	8,320	293			
1507	(Class 10,000)				352,000	83,200	2,930			
1508	(Class 100,000)				3,520,000	832,000	29,300			

Fig. 2: Particle Count Requirements

- Medical Device Manufacturing:
- Aneuvas: Aneurysm Stent Grafts

Benchmarking


3 Existing Designs:

Current Cleanroom (ROTC Building) ISO 7

Softwall Cleanroom (Clean Air Products) ISO 8-4

Modular Hardwall Clean room (Global Industrial) ISO 8

Customer and Engineering Requirements

Customer Requirements

- o Modular
- Transportable
- Spacious
- Compliant with current clean room
- Compliant Gown Storage
- FFU with HEPA
- Backup power
- Alcohol safe materials

Stretch Goals

- \circ 10'x20' floor space
- Easily broken down and transported

Engineering Requirements

- Positive pressure
- o 10'x10'
- Class 7 clean room
- FFU power
- Cleanroom power draw/Battery voltage
- Filter unit strength
- Load Bearing frame
- Temperature and pressure regulated

Logan Bennett, 9-18-23, Modular Sterile Manufacturing Clean Room

	System QFD				Project: <mark>Modular Sterile Manufacturing Clean Room</mark> Date: <mark>9-18-23</mark>										
1	Creates and maintains positive pressure														
2		Dimensions	6												
3 4	Accept	able particle count FFU power	6 9	1	9							•		Legend oker Curr	ent Design
5	Cleanr	oom power output	3	1		6					A Dr. Becker Current Desig B Clean Air Cleanroom				
6		Filter level			9	1		\geq							l Cleanroor
7		oad bearing frame	1	6		3			\geq						
8	Temperature and	pressure regulated	9	1	6	9	1				_				7
			Technical Requirements C				Customer Opinion Survey								
	Customer Needs	Veight	Creates and maintains positive pressure	Dimensions	Acceptable particle count	FFU power	Cleanroom power output	Fitter level	Load bearing frame	Temperature and pressure regulated	1 Poor	2	3 Acceptable	4 5 Excellent	
1	Modular	5	-3	6	-3	0	0	0	6	-3		С		AB	
	Transportable	3	-3	6	-3	0	0	0	3	÷		c	AB		_
2 3	Spacious Room Connectability	4 5	-1 -3	9	-1 -1	-3 0	-1 0	0	-3 3	-1 -3	с	A B	A	СЕ	-
4	Compliant Gown Storage	4	-3	1	3	0	0	0	1	->	0	ABC	<u> </u>		-
5	FFU with HEPA	5	9	1	9	9	6	9	6	6		С		AB	
6	Generator Backup Power	2	6	0	6	9	9	0	1	3	ABC				
11	Alcohol Safe Materials	5	0	0	9	0	0	0	1	0				AE	iC.
	Technical Req	uirement Units	atm	ŧ	particles/ m^3	w	w	N/A	z	Ра					
	Technical Requi	ement Targets	20	10×10	352,000	430	>1000	MERV 17	2500	> 25					
	Absolute Techni	cal Importance	18	123	81	51	44	45	83	7					
	Relative Techni	cal Importance		-	8	4	9	9	2						

Michelle Borzick, 9-18-23, Modular Sterile Manufacturing Clean Room

- General engineering resources, including stress equations, and material strengths
- Final Design has not been decided on
- Modularity and collapsibility are the focus
- These papers provide resources for one or multiple of the following options
 - Folding/scissor mechanism
 - Telescopic beams
 - Non-welded connections

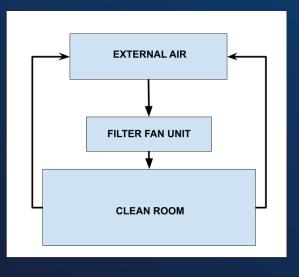
Fig. 4: Steel framed building

References:

[1] M. Babaei and E. Sanaei, "Geometric and Structural Design of Foldable Structures,"

[2] R. T. Leon and W. S. Easterling, *Connections in Steel Structures IV: Behavior, Strength and Design: Proceedings of the Fourth International Workshop Held at Hotel Roanoke Convention and Conference Center*

[3] Z. CUI, W. JIANG, and L. CHENG, "Analysis and experimental verification of the strength of telescopic booms for construction machinery," *International Journal of Simulation: Systems, Science & Compressional Systems*, 1–10, 2016. doi:10.5013/ijssst.a.17.27.33


[4] H. Jain, "Steel Connections - Types and Uses," The Piping Mart,

[5] L. WebStructural, "Beam Designer," WebStructural, <u>https://webstructural.com/beam-designer.html</u> (accessed Sep. 13, 2023).

[6] J. M. Amiss, F. D. Jones, H. H. Ryffel, R. E. Green, and C. J. McCauley, *Machinery's Handbook*, 25th ed. New York, NY: Industrial Press, 1996.

Logan Bennett, 9-18-23, Modular Sterile Manufacturing Clean Room

- General equations for Thermodynamics, and includes property table for air
- Includes thermodynamics requirements for a Cleanroom
- Explains common issues and how to fix it
- Gives Thermodynamic properties for the Filter Fan Unit
- Simplify the Ideal Gas Law in humid conditions.

References:

[7] T. Oo, P. Thu, A. Zaharov, A. Ryabyshenkov, and N. Larionnov, "Analysis Thermodynamic Analysis of Air Conditioning System of Clean Rooms," *IEEE*, pp. 2227–2230, Mar. 2019, doi: <u>10.1109/EIConRus.2019.8657071</u>.

[8] M. Moran and S. Howard, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS, 8th ed. Wiley, 2014.

[9] T. Xu, "Characterization of minienvironments in a clean room: Design characteristics and environmental performance," Elsevier, vol. 42, no. 8, pp. 2993–3000, Aug. 2007, doi: <u>https://doi.org/10.1016/j.buildenv.2006.10.02</u>0.

[10] Onicon Brand, "Maintaining Area or Room Pressurization in Manufacturing and Healthcare," Jul. 31, 2020. <u>https://www.airmonitor.com/industrial/blog/maintaining-area-or-room-pressurization-in-manufacturing-and-healthcare/</u> (accessed Sep. 14, 2023).

[11] J.-J. Chen, C.-H. Lan, M.-S. Jeng, and T. Xu, "The development of fan filter unit with flow rate feedback control in a cleanroom," *Elsevier*, vol. 42, no. 10, pp. 3556–3561, Oct. 2007, doi: <u>https://doi.org/10.1016/j.buildenv.2006.10.026</u>.

[12]"Humidity and the Ideal Gas Law," *WES Energy and Environment, LLC*, May 04, 2020. <u>https://wesenergyandenvironment.com/2020/05/04/humidity-and-the-ideal-gas-law-2/</u> (accessed Sep. 14, 2023).

Aaron Reynoza, 9-18-23, Modular Sterile Manufacturing Clean Room

- These papers provide resources for one or multiple of the following options
 - Manufacturing of cleanrooms
 - Clean room Designs
 - Clean room Comparisons
 - Material properties

Fig. 6: Terra Universal Cleanroom

References: [13] W. Callister, Materials Science and Engineering, John Wiley & Sons, 2018.

[14] B. R. Bengt Ljungqvist, Clean Room Design: Minimizing Contamination Through Proper Design, CRC Press, 1996.

[15] "Softwall Cleanrooms," Clean Air Products, 2023. [Online]. Available: <u>https://www.cleanairproducts.com/softwall-cleanrooms</u>.

[16] Terra Universal : Critical Enviorment Solutions inc, "FS209E and ISO Cleanroom Standards," Terra Universal INC, Fullerton, 2012.

[17] M. Bedak, "Comparison of Conventional Cleanrooms, Restricted Access Barier Sysems, and Isolators," Vienna University of Applied Sciences , 2018.

[18] MDH Contamination Control, "Cost-effective Clean Room Designs," pp. 1-4, 1992.

Air Flow and Particulate Requirements:

- Average air flow and particulate requirements for maintaining a Level 7 clean room
- Fan Filter Unit:
 - o Placement
 - Speed of fan to area of room ratio
 - Impact on particle count
 - HEPA filter compatibility

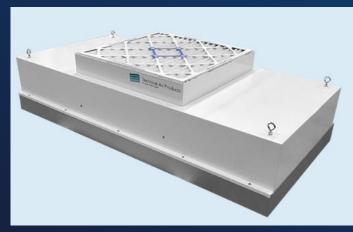


Fig. 7: Filter Fan Unit

References:

[19] "Air flow rates," Clean Rooms West, Inc., https://www.cleanroomswest.com/air-flow-rates/ (accessed Sep. 14, 2023).

[20] "ISO 7 cleanroom," ISO Class 7 Cleanrooms | Cleanroom ISO 7 Specifications, <u>https://www.cleanairproducts.com/resources/industry-</u> <u>standards/iso7#:~:text=ISO%207%20Cleanroom%20Quality%20%26%20Standard</u> %20Requirements&text=An%20ISO%207%20or%20Fed,%E2%89%A55%20%C2 %B5m%20sized%20particles. (accessed Sep. 14, 2023).

[21] Captive Air Industries, "Designing Air Flow Systems," Air Flow, air systems, pressure, and Fan Performance, <u>https://www.captiveaire.com/manuals/airsystemdesign/designairsystems.htm</u> (accessed Sep. 14, 2023).

[22] H. Li, C. Huang, W. Yi, and C. Li, "Analysis and experiments on the characteristics of airflow and the air cleanliness protection region under fan filter units in cleanrooms," *Sustainability*, vol. 15, no. 17, p. 13268, 2023. doi:10.3390/su151713268.

[23] P. Mičko *et al.*, "Impact of the speed of airflow in a cleanroom on the degree of Air Pollution," *Applied Sciences*, vol. 12, no. 5, p. 2466, 2022. doi:10.3390/app12052466

[24] X. Shao *et al.*, "Experimental investigation of particle dispersion in cleanrooms of electronic industry under different area ratios and speeds of fan filter units," *Journal of Building Engineering*, vol. 43, p. 102590, 2021. doi:10.1016/j.jobe.2021.102590

Michelle Borzick, 9-18-23, Modular Sterile Manufacturing Clean Room

Structural:

Truss analysis: $\sum_{F_y = 0, \sum F_x = 0}$

Bending:

 $\sigma = \frac{Mc}{I}$ $I = \frac{bh^3}{12}$

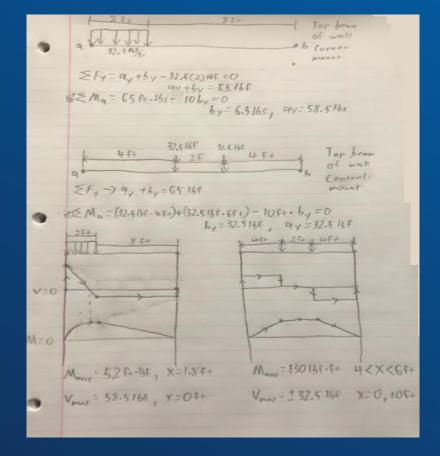


Fig. 8: Effect on moment and shear by placement of FFU

Logan Bennett, 9-18-23, Modular Sterile Manufacturing Clean Room

Material Analysis:

Stress (Normal):

$$\sigma = \frac{load}{Area} = \frac{L}{A}$$

Strain (Normal):

$$\epsilon = \frac{Change in length}{Original Length} = \frac{\Delta L}{L}$$

Modulus of Elasticity:

$$E = \frac{Stress}{Strain} = \frac{\sigma}{\varepsilon}$$

Thermodynamics: 1st Law

$$\frac{dE_{C\forall}}{dt} = \dot{Q}_{C\forall} - \dot{W}_{C\forall} + \sum_{i} \dot{m}_i \left(h_i + \frac{V_i^2}{2} + gz_i \right) - \sum_{e} \dot{m}_e \left(h_e + \frac{V_e^2}{2} + gz_e \right)$$

$$\frac{dm_{CV}}{dt} = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e}$$
$$\dot{m} = \int \rho V_{N} \, dA = \rho(AV) = \frac{(AV)}{v} = \frac{\dot{\forall}}{v}$$

Thermodynamics: 2nd law

 $\underbrace{\sigma}_{entropy} = \underbrace{\Delta S_{CM}}_{entropy} - \underbrace{\int \frac{\delta Q_{CM}}{T}}_{entropy \ transfer} \ge 0 \ if \ reversible}_{=0 \ if \ is entropic} = 0 \ if \ adiabatic = 0 \ adiabatic = 0$

Aaron Reynoza, 9-18-23, Modular Sterile Manufacturing Clean Room

Air Flow Calculations:

• Mass Flow Rate:

$$\dot{m} = VA$$

• Particle Count:

$$Particle\ Count = \frac{Particles}{V}$$

• Reynold's Number for Laminar Flow:

$$Re = \frac{\rho VL}{\mu}$$

Schedule

TASK ASSIGNED TO PROGRESS START END
ASSIGNED TO PROGRESS START END
Team Charter
Team Purpose Aaron 100% 9/6/23 9/8/23
Team Goals Logan 100% 9/6/23 9/8/23
Team Personalities/Roles All 100% 9/6/23 9/8/23
Ground Rules Gia 100% 9/6/23 9/8/23
Potential Barriers/Coping Michelle 100% 9/6/23 9/8/23
Presentation 1
Project Description Aaron 100% 9/11/23 9/18/23
Background/Benchmarking Gia 100% 9/11/23 9/18/23
Customer/Technical Requirements/QFD Logan/Michelle 100% 9/11/23 9/18/23
Lit Review All 100% 9/11/23 9/18/23
Math Modeling All 100% 9/11/23 9/18/23
Schedule Michelle 100% 9/11/23 9/18/23
Budget Gia 100% 9/11/23 9/18/23
Presentation 2
Project Description 0% 9/19/23 9/24/23
Concept Generation - Top Level 0% 9/19/23 9/24/23
Concept Generation - Sub-Assembly Level 0% 9/19/23 9/24/23
Engineering Calculations All 0% 9/19/23 10/1/23
Concept Evaluation - Charts 9/19/23 10/8/23
Concept Evaluation - Design Summary 9/19/23 10/8/23
Concept Evaluation - CAD 9/19/23 10/8/23
Schedule - Gantt Chart 9/19/23 10/8/23
Budget 9/19/23 10/1/23
Bill of Materials 0% 9/19/23 10/8/23

Fig. 9: Gantt Chart

Michelle Borzick, 9-18-23, Modular Sterile Manufacturing Clean Room

Current Budget : \$5K - \$10K

Projected Expenses:

70% - Materials (Steel, Fans, Vinyl/Acrylic)
15% - Powder Coating
10% - Backup Battery
5% - Prototyping

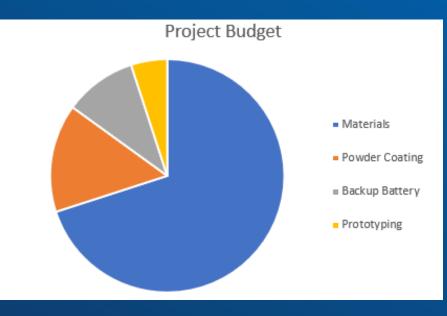


Fig. 10: Budget

10% Fundraising: Plan to reach out to other Research partners

THANK YOU!

