Modular Sterile Manufacturing Cleanroom

Logan Bennett Michelle Borzick Gia Neve Aaron Reynoza

Project Description

Original Project Description: Create a $12' \times 8'$ modular ISO 7 Cleanroom with FFU's. Convert the current cleanroom into a gowning room.

New Project Description: Create a 12' X 16' modular ISO 7 cleanroom Using FFU's while also converting the current cleanroom to a gowning room

Figure 1: 12' x 16' Cleanroom design

Gia, 11-6-23, Modular Sterile Manufacturing Clean Room

Design Description

- The design remains generally the same, but now twice as large
- Sub-assemblies are still the same, besides fan number and location
 - Wall Material Polycarbonate
 - Frame Material Aluminum square tubing
 - Frame connections Nylon/Fiberglass tube connectors
 - Material connection Nuts and Bolts
 - Fan Location/number 4 fans, spaced equally from each other and the walls

Page 2 of the drawing demonstrates how the frame will be built, including the tube connectors and Square tubing

Figure 2: Page 2 of CAD drawing packet

Logan, 11-6-23, Modular Sterile Manufacturing Clean Room

Design Description

Page 5 in the CAD drawing packet demonstrates the method used to attach the walls to the frame, and the locations the nuts and bolts will be used

Figure 3: 16-foot wall of the Cleanroom

Logan, 11-6-23, Modular Sterile Manufacturing Clean Room

Design Requirements

- Customer Requirements:
- 1. Modular
- 2. Transportable
- 3. Spacious
- 4. ISO Class 7 Compliant
- 5. Generator Backup Power
- Engineering Requirements:
- 1. Room Area: $> 48ft^2$
- 2. Positive Pressure: $\geq 0.02 Pa$
- 3. Particle Count: < 352,000 $particles/m^{3}$
- 4. Particle Size: $< 0.5 \ \mu m$
- 5. Airflow: > 0.051 m/s
- 6. Ceiling Coverage: > 15%
- 7. Reynold's Number: ≤ 2300
- 8. Power: ~7200 *W*

	Project: Modular Sterile Manufacturing Clean Room														
				Date:	9-18-	23								l	
	Room Area	\sim													
	Positive Pressure	6	\sim												
	Particle Count	6	6	\sim									Leger	nd	
	Particle Size	6	6	9	\geq						Α	Dr. Be	cker C	urrent l	Design
Airflow			6	3	3	\geq					В	Clean	Air Cle	eanroor	n
	Ceiling Coverage	9	6	9	9	6					С	Globa	Indust	trial Cle	anroom
	Reynold's Number	6	3	1	1	9	6								
	Power Requirement	1	3	3	3	3	1	3							1
				Ingine	ering	Requir	ement	s		Cus	Customer Opinion Survey				
Customer Requirements	Weight	Room Area	Positive Pressure	Particle Count	Particle Size	Airflow	Ceiling Coverage	Reynold's Number	Power Requirement	1 Poor	2	3 Acceptable	4	5 Excellent	
Modular	5	3									С		AB		
Transportable	3	3									С	AB	-		
Spacious	4	9	-1	-1	-1	-1	0	-			A		C	B	
Concretes Reakurs Down	5	3	9	9	9	9	9	0	1	ARC			A	BC	
Generator Backup Power	2	1	1	1	1	1		1	9	ABC					
Engineering Requirement Units			Pa	particles/ m^3	mu	s/m	N/A	N/A	M						
Engineering Requirement Targets			0.02	352,000	0.5	0.051	15%	2300	7200						
Absolute Technical Importance		17	3	3	13	13	£5	32	33						
Relative Tec	hnical Importance	1 7	3 4	3 4	3 4	3 4	2	4	5 2						

Figure 4: Updated QFD

Michelle, 11-6-23, Modular Sterile Manufacturing Clean Room

Structure:

- Structural analysis to be done using Ansys or Solidworks simulation, this will be virtual prototype 2
- The goal of this prototype is to determine if support columns will be needed for our new 12'x16' design
- Ansys will be used to find maximum deflection and maximum stress for 2 designs; one with support columns, and one without

Figure 5: The CAD ceiling for without support

Figure 6: The CAD ceiling with support columns

Logan, 11-6-23, Modular Sterile Manufacturing Clean Room

Polycarbonate Wall:

6

- Polycarbonate Wall: Using SolidWorks Simulation to find out how much pressure it can handle while using minimum amount of bolts to hold up the walls
- Goal: Finding out the least number of bolts and nuts that can be used before yielding from gravity and air pressure.
- Process: Experimenting with the number of Bolts and pressure that the polycarbonate can handle without yielding
- Max Stress Before Yielding: 60 MPa
- Minimum amount of pressure for an efficient cleanroom: 0.2 Pa

Aaron, 11-6-23, Modular Sterile Manufacturing Clean Room

Gravity and Air Pressure SolidWorks Simulation

Figure 7: Polycarbonate Testing for Maximum Air Pressure in SolidWorks Simulation

Figure 8: Polycarbonate Testing for Bolt amount and location in SolidWorks Simulation

These Simulation can find the Stress, Strain, and Displacement Values

Aaron, 11-6-23, Modular Sterile Manufacturing Clean Room

Computational Fluid Dynamics:

• Updated FFU Number:

so	Air Changes	Ceiling
Class	Per Hour	Coverage
501	500-750	80-100%
50 2	500-750	80-100%
503	500-750	60-100%
04	400-750	50-90%
505	240-600	35-70%
606	150-240	25-40%
07	60-150	15-25%
SO 8	5-60	5-15%

Figure 4: Ceiling Coverage Requirements

 $Ceiling Coverage = \frac{Area FFUs}{Area Cleanroom Ceiling}$

Ceiling Coverage 2 Fans
$$=$$
 $\frac{4(2x4)}{12x16}$ $=$ 16.67%

Upcoming Ansys CFD Simulations for Technical Analysis:

- Goals:
- 1. How far should the cleanroom walls be off the ground?
- 2. What speed should the FFUs be to maintain pressure, airflow, and particle count?

Engineering Calculations Updated Cost Analysis:

New Framing Cost: \$ 2,608.74

New Connector Cost: \$ 564.91

Wall Material Cost: \$2,198.02

Framing cost : 80/20 Connector cost : Esto Connectors Wall material cost : Eplastics

FFU Cost: \$4,608 ~ round to \$5,000 to try and account for shipping and tax

Total Cost: \$ 10,371.67

Design Validation

Table 1: Failure Modes and Effects Analysis (FMEA)

		Development Team	Logon B	ia Neve	Page No 1 of 1						
Product Name: M	odular Sterile Cleanroom	Aaron Boynoza	. LUYan Di	ennet, Michelle Borzick, G	la Neve,	Date: November 2023					
		Adron Reynoza									
Part and	Potential Failure Mode	Potential Effect(s)	Severity	Potential Causes and	Occurance	Current Design	Detection	DDN	Recommended Action		
Functions		of Failure	(S)	Mechanisms of Failure	(0)	Controls Test	(D)	KPN	Recommended Action		
Fan Filter Unit:		Increased particle				Regularly scheduled					
maintains airflow,	HEPA filter needs replaced	count	5	Inadequate maintanence	1	maintanence	3	15	Replace HEPA filter		
pressure, and		Increased particle							Maintenance or replace		
particle count		count	5	Power outage	3	Backup battery		15	battery		
requirements		Loss of positive					1		Maintenance or replace		
		pressure	8	Inadequate power supply	1	Backup battery		8	battery		
		Decreased airflow	8					8			
		Loss of ISO Class 7				Regularly scheduled					
	Fan turns off	Certification	8	Fan motor burnout	1	maintanence	1	8	Replace fan filter unit		

Upcoming Testing of Engineering Requirements (to be completed on the assembled cleanroom in the designated lab space):

- Wall height: test various heights of walls before cutting materials down to size
- Fan speed setting: anemometer and particle counter at different speeds
- Room pressure: barometer
- Particle count: utilizing particle counter
- Battery load: utilizing all FFUs attached to backup battery for several hours

Michelle, 11-6-23, Modular Sterile Manufacturing Clean Room

Schedule

Build Timeline for 2024:

- End of year 2023: All materials ordered and set for delivery by February 1st
- February 13th: Cleanroom 67% built entire frame built with screw holes pre-drilled, all walls installed/screwed into place, all FFUs installed, experimental testing for wall height
- March 1st: Complete SOPs for assembly and gowning
- March 6th: Cleanroom 100% built backup power installed and tested, complete all ISO Class 7 related testing
- April 3rd: Cleanroom certified for ISO Class 7 use, final poster complete
- April 10th: Prep for final product demo, final testing results, and presentation

Current Budget : 10K, Hoping to get 12-13K Anticipated expenses: ~ \$10,371.67 Actual Expenses to Date: None

Fundraising Update: Currently constructing a Budget proposal to Dr. Razavians Biomedical Club for extra funds.

References

[1] "Modular Softwall Cleanrooms: Cleanroom design," Modular Cleanrooms | Cleanroom Design and Installation, https://modularcleanrooms.com/cleanrooms/softwall/ (accessed Oct. 7, 2023).

[2] "Washer head screws for polycarbonate," Charley's Greenhouse & Garden, https://charleysgh.com/products/washer-head-screws-1-1-2-for-6mm-8mm-poly-capping (accessed Oct. 7, 2023).

[3] "Cleanroom; Hardwall, modular, polycarbonate panels, powder-coated steel frame," 6600-64A, https://www.terrauniversal.com/cleanroom-hardwall-modular-polycarbonate-panels-powder-coated-steel-frame-6600-64a.html (accessed Oct. 7, 2023).

[4] "Installation accessories for polycarbonate sheets and Systems," Installation Accessories for Polycarbonate Sheets and Systems -

ePlast.com, https://www.eplast.com/accessories.html (accessed Oct. 7, 2023).

[5] "Installation accessories for polycarbonate sheets and Systems," Installation Accessories for Polycarbonate Sheets and Systems -

ePlast.com, https://www.eplast.com/accessories.html (accessed Oct. 7, 2023).

[6] "Master magnet 1 in. x 10 ft. Magnetic Tape 97284," The Home Depot, https://www.homedepot.com/p/Master-Magnet-1-in-x-10-ft-Magnetic-Tape-97284/206503475 (accessed Oct. 7, 2023).

[7] "Products," Testrite Instrument Co., Inc., https://www.testriteoem.com/products/1-square-tubing-system-build-a-stand/ (accessed Oct. 7, 2023).

[8] "Parco T-slotted aluminum extrusion products," Torpey Denver, https://torpeydenver.com/parco-80-20-framing-system/ (accessed Oct. 7, 2023).

[9] "Powder-coated square tubing table frame," EnduraSteel Stainless Steel Tables, https://www.endurasteel.com/products/powder-coated-tables/powder-coated-square-tubing-table-frame/%C2%A0 (accessed Oct. 7, 2023).

[10] "6061-T6 heavy wall telescopic square tubing," Alcobra Metals, https://alcobrametals.com/telescopic-tubing/6061-t6-heavy-wall-telescopic-square-tubing/ (accessed Oct. 7, 2023).

[11] J. Maes, "Does Welding Aluminum Weaken It?," Make it From Metal. Accessed: Oct. 09, 2023. [Online]. Available: https://makeitfrommetal.com/does-welding-aluminum-weaken-it/

[12] "Overview of materials for Nylon 6, Cast." Accessed: Oct. 09, 2023. [Online].

Available: https://www.matweb.com/search/DataSheet.aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1&ckck=1

[13] "18/8 Stainless Steel, Grade 18-8 SS Properties & Meani https://www.homedepot.com/p/Master-Magnet-1-in-x-10-ft-Magnetic-Tape-97284/206503475

ng," 304 Stainless Steel. Accessed: Oct. 09, 2023. [Online]. Available: https://304stainlesssteel.org/18-8-stainless-steel/

[14] "6005A-T61 Aluminum :: MakeItFrom.com," MakeItFrom.com. Accessed: Oct. 09, 2023. [Online]. Available: <u>https://www.makeitfrom.com/material-properties/6005A-T61-</u> <u>Aluminum</u>

[15] US Magnetix, "Magnet pull force: Measure strength of magnet: Magnets holding power," Industrial and Promotional Magnets, https://usmagnetix.com/magnet-pull-force-how-much-weight-can-a-magnet-hold/ (accessed Oct. 9, 2023).

THANK YOU!

