Modular Sterile Cleanroom Initial Testing Results

Logan Bennett Michelle Borzick Gia Neve Aaron Reynoza

Design Requirement Summary

Customer Requirements:

- CR1: Modular can be assembled and disassembled in a business day with a small crew of people
- CR2: Transportable can be transported in sections
- CR3: Spacious can hold at least
 6 people
- CR4: Safe can support the weight of the FFUs
- CR5: ISO Class 7 Compliant meets pressure, particle count, and airflow requirements.

Engineering Requirements: ER1: Spacious - room area around 192 *f* t² (12' x 16') ER2: Positive Pressure – pressure difference ≥ 0.2 Pa **ER3:** Particle Count and Size - < 352,000 number particles, $< 0.5 \mu m$ particle size **ER4: Airflow** - ≥ 90 ft/min, ≥ 60 air changes/hour **ER5: Ceiling Coverage** - $\geq 15\%$ **ER6: Reynold's Number** - $< 1 * 10^{7}$ ER7: Deflection - ~0in

Top Level Testing Summary

Table 1: Test Summary

Experiment/Test	Relevant DRs	Testing Equipment Needed
Deflection	CR4 (Safe)	Tape measure
Particle Count	CR5 (ISO Class 7 Compliant), ER3 (Particle Count and Size)	Aerosol mass monitor, sterile gloves, hair net, shoe covers, ethanol solution
Airflow	CR5 (ISO Class 7 Compliant), ER4 (Airflow), ER6 (Reynold's Number)	Hot wire anemometer
Pressure	CR5 (ISO Class 7 Compliant), ER2 (Positive Pressure)	Manometer
Area	CR3 (Spacious), ER1 (Spacious), ER5 (Ceiling Coverage)	Tape measure
Modularity	CR1 (Modular), CR2 (Transportable)	Instruction manual, rubber mallet, 1/4" torque wrench, ladder, timer

Deflection Testing Plan

Goal:

 Determine best support beam configuration - smallest deflection, ceiling height 90in

Procedure:

- 1. Obtain a measuring tape and locate the 6 deflection points on the roof configuration.
- 2. For each of the support beam configurations, measure the distance from the top of the connector to the floor at each deflection point. Record the distances on the specifications sheet.
- 3. Calculate the average deflection for each support configuration.

Figure 1: Deflection Points and Support Beam Configurations

 $Average \ deflection = \frac{\Sigma \ deflection \ measurements}{Number \ deflection \ measurements}$

Deflection Results

Deflection Point	No Support Beams	Support Beam Config 1	Support Beam Config 2	Support Beam Config 3	Support Beam Config 4
1	88.6"	89.4"	90.0"	88.8"	90.1"
2	88.6"	89.5"	90.0"	88.8"	90.1"
3	88.6"	90.0"	88.9"	90.0"	90.0"
4	88.6"	90.0"	88.9"	90.0"	90.0"
5	88.5"	89.5"	90.0"	88.8"	90.1"
6	88.9"	89.5"	90.0"	88.8"	90.1"
Average Beam Height	88.63"	89.65"	89.63"	89.2"	90.07"
Average Deflection	1.37"	0.35"	0.37"	0.8"	- 0.07"

Table 2: Deflection Testing Results

Aaron, Modular Sterile Cleanroom, 4-10-24

Results: • Support Beam Config 4: 2 off center supports with a centralized ceiling beam.

Airflow Testing Plan:

Goal:

- Average velocities >90 ft/min.
- Air changes per hour > 60.
- Reynold's Number $< 1 * 10^7$

Procedure:

- 1. Obtain calibrated hot wire anemometer.
- 2. Enter the cleanroom.
- 3. Measure the minimum and maximum velocities under the center of each FFU and at the center of each outlet.
- 4. Record the velocities for each FFU and outlet location as labeled.
- 5. Calculate the average velocity, air changes per hour, and Reynold's number at each location.

Figure 2: Anemometer

5

Airflow Results:

Table 3: Airflow Testing Results

Measurement	Minimum	Maximum	Average	Air	Reynold's	
Location	Velocity	Velocity	Velocity	Changes	Number	
	(ft/min)	(ft/min)	(ft/min)	per Hour		
FFU 1	63	69	66	54	$6.58 * 10^4$	
FFU 2	53	56	54.5	44	$5.43 * 10^4$	
FFU 3	68	74	71	58	$7.07 * 10^4$	
FFU 4	71	77	74	61	$7.37 * 10^4$	
Outlet 1	105	114	109.5	89	$1.09 * 10^5$	
Outlet 2	93	111	102	83	$1.02 * 10^5$	
Outlet 3	92	104	98	80	$9.76 * 10^4$	
Outlet 4	113	118	115.5	94	$1.15 * 10^5$	
Outlet 5	126	136	131	107	$1.31 * 10^5$	
Outlet 6	105	118	111.5	91	$1.11 * 10^5$	
Outlet 7	119	127	123	100	$1.23 * 10^5$	
Outlet 8	119	124	121.5	99	$1.21 * 10^5$	
Outlet 9	108	114	111	90	$1.11 * 10^5$	
Outlet 10	113	118	115.5	94	$1.15 * 10^5$	
Outlet 11	108	111	109.5	89	$1.09 * 10^5$	
Outlet 12	94	98	96	78	$9.56 * 10^4$	
	Cleanroc	om Averages:	100.6	81.6	$1.00 * 10^5$	

Anemometer Specifications: Accuracy: ± 5 ft/min Resolution: 1 ft/min

Results:

- Average Velocity > 90 ft/min
- Average air changes/hour > 60 Average Reynold's Number is laminar

Michelle, Modular Sterile Cleanroom, 4-10-24

Area Testing Plan and Results:

Goal: Area of the cleanroom is around 12'x16' to accommodate at least 6 people. Ceiling coverage of cleanroom is > 15%.

Procedure:

7

- 1. Obtain measuring tape and calculator.
- 2. Measure the length of the cleanroom floor from one corner to the next corner on the long side of the cleanroom.
- 3. Measure the width of the cleanroom floor from one corner to the next corner on the short side of the cleanroom.
- 4. Calculate area of cleanroom.
- 5. Measure the width and length of each FFU surface. Calculate the area of each FFU surface and then the average area of the FFU surfaces.
- 6. Calculate the ceiling coverage of the cleanroom.

A = LxWCeiling Coverage = $\frac{Area \ FFUs}{Area \ Cleanroom}$

Table 4: Area Testing Results

	Cleanroom	FFU
Length (ft)	15.75	3.88
Width (ft)	11.77	1.88
Area (ft^2)	185.4	7.29
Ceiling Coverage (%)	15.7%	

Results:

- Area of the cleanroom was sufficient to hold 6 people.
- Ceiling coverage is >15%.

Particle Count Testing Plan

Goal:

• All particle count measurements within the acceptable range.

Procedure:

- 1. Obtain calibrated aerosol mass monitor.
- 2. Put on hair net, shoe covers, and sterile gloves. Enter sterilized cleanroom.
- 3. Test particle count in each designated quadrant and corner. For all measurements, measure 6ft above the ground in the center of each designated quadrant.
- 4. Record all particle counts on specification sheet.

Figure 3: Aerosol Mass Monitor

Expected Results: Maximum of 352,000 particles of size greater than 0.5 μ m.

Pressure Testing Plan:

Goal:

 Difference between the inside and outside cleanroom pressure is ≥ 0.2 Pa.

Procedure:

- 1. Obtain calibrated manometer.
- 2. Record the ambient air pressure outside of the cleanroom.
- 3. Place one side of the manometer tube outside of the cleanroom and one side inside of the cleanroom to measure the pressure difference.
- 4. Repeat for each of the 6 measurement locations.
- 5. Calculate the average pressure difference.

Figure 4: Wall Pressure Measurement Locations

Expected Results:

Pressure difference between the inside and outside of the cleanroom ≥ 0.2 Pa.

9

Modularity Testing Plan:

Goal:

- Estimate assembly and disassembly time to determine if cleanroom is modular.
- Identify smaller transportable sections of design.
- Able to assemble or disassemble cleanroom in one business day.

Procedure:

- 1. Obtain assembly manual and all required materials.
- 2. Assemble all E beams with connectors to form the perimeter of the cleanroom. Record time taken to assemble.
- 3. Assemble all A beams to perimeter as shown.
- 4. Assemble the ceiling in the 5 quadrants as shown. Assemble in quadrant order.
- 5. Assemble all ceiling polycarbonate sheets using the required nuts and hex bolts outlined in the assembly.
- 6. Assemble all wall polycarbonate sheets using the required nuts and bolts outlined in the assembly.
- 7. Install vinyl sheets for doorway.
- 8. Install FFUs on ceiling. Plug in all electrical cords.

Figure 5: 12ft Wall

Figure 6: 16ft Wall

Michelle, Modular Sterile Cleanroom, 4-10-24

10

Modularity Testing Plan:

Figure 7: Ceiling Quadrants

Expected Results:

Assembly: 8 hrs

Disassembly: 10 hrs

Specification Sheet Preparation

Table 5: Customer Requirements Summary Table

Customer Requirement	CR Met? (√ or X)	Client Acceptable? (√ or X)
Modular		
Transportable		
Spacious	\checkmark	\checkmark
Safe	\checkmark	\checkmark
ISO Class 7 Compliant		

Table 6: Engineering Requirements Summary Table

Engineering	Target	Tolerance	Measured/	ER Met?	Client Acceptable?
Requirement			Calculated Value	(√ or X)	(√ or X)
Spacious	$192 ft^2$	$\pm 10 ft^2$	185.4 ft^2	\checkmark	\checkmark
Positive Pressure	$\geq 0.2 Pa$	N/A			
Particle Count	< 352,000 particles,	N/A			
	< 0.5 μm				
Airflow	> 90 <i>ft/min</i> ,	N/A	100.6 <i>ft/min</i> ,	\checkmark	\checkmark
	> 60 air changes		911 air changes		
Ceiling Coverage	> 15%	N/A	15.7%	\checkmark	\checkmark
Reynold's Number	$< 1 * 10^{7}$	N/A	$1 * 10^5$	\checkmark	\checkmark

QFD		System QFD	Project: Modular Sterile Manufacturing Clean Room Date: 4-9-24													
Undates:	1 2 3 4		Room Area Positive Pressure Particle Count Particle Size	666	66	9						F	A Dr.	Lege Becker (nd Current E	Design
 Added ER Deflection to align CR Safe 	5 6 7		Airflow Ceiling Coverage Reynold's Number Deflection	6 9 6 9	6 6 3	3 9 1	3 9 1	6 9	6 6		_	E	B Cle C Glo	an Air Cl bal Indus	eanroom strial Cle	anroom
 Removed ERs Power and Surface Contamination per Client's request 		Customer Requirements	Weight	Room Area	Positive Pressure	Particle Count	Particle Size	Airflow	Ceiling Coverage	Reynold's Number	Deflection	Lood t	2 3 Acceptable	nion Su	5 Excellent	
	1	Modular	5	3							1		C	AB		
	3	Spacious	4	9	-1	-1	-1	-1		-1	9		A	c	В	
	4	Safe	5	9							9				ABC	
	5	ISO Class 7 Compliant	5	3	9	9	9	9	9	6				Α	BC	
		Engineering I	Requirement Units	ft^2	Pa	particles/ m^3	Ē	ft/min	*	N/A	.5					
		Engineering Re	quirement Targets	192	0.2	352,000	0.5	06	15%	1.00E+07	0					
		Absolute Tec Relative Tec	hnical Importance	1 120	4 41	4 41	4 41	4 41	3 45	5 26	2 89					

Figure 8: QFD

QFD

THANK YOU!

