NAL

SAE Baja '24 Capstone Team

Presentation 1

Abraham Plis, Evan Kamp, Bryce Fennell Joey Barta, Lars Jensen, Seth Deluca Cooper Williams, Gabriel Rabanal, Antonio Sagaral Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger

Project Description

What is SAE Baja?

The Society of Automotive Engineers (SAE) Baja Collegiate Design Series is an engineering challenge for students to design and build a single-seat, all-terrain vehicle.

- Compete against other universities
- 13 members total, 4 sub-teams
 - Front End, Rear End, Frame, Drivetrain
- Sponsors: Stay tuned!
- Successful performance puts NAU on the map, strengthens internal Baja knowledge, and grows NAU Baja industry sponsorship connections

NAU SAE Baja 2020-2021

Background

"State-of-the-Art" University Teams

Creative innovation without rule violations is the goal. Some teams do this better than others due to funding & legacy knowledge:

- Baja ETS
 - #1 Overall (Oregon 2023), Placed Top 3 in 8/10 Events
- Beaver Racing
 - #2 Overall (Oregon 2023), Place Top 3 in 4/10 Events
- Cornell Baja Racing
 - #3 Overall (Oregon 2023), Place Top 3 in 5/10
 Events

Baja ETS SOTA Vehicle

Benchmarking #1 – Front

Positive Scrub Radius

Moment Arm Steering

Axis

Contact

Patch

Brake Force

Zero Scrub Radius

Knuckle Design - Scrub Radius

Many top teams go with a **zero (or near zero) scrub radius** when designing their front suspension. This minimizes scrub radius influence on steering and toe characteristics under braking/acceleration.

NORTH

Benchmarking #2 - Front

Front Shock Placement

3 front shock lower mounting locations can be:

- Upper A arm mounted to the upper front brace member
- Upper A arm mounted to the lower front brace member
- Lower J arm mounted to the lower front brace member
- First Place 2023 Oregon: ETS Lower front brace mounted
- First Place 2023 Ohio: CWRU Lower front brace mounted
- First Place 2017 Oshkosh: UM Ann Arbor Side impact/lower brace junction mounted

Upper Front Brace Members highlighted in blue

Lower Front Brace Member highlighted in red

Benchmarking #3 - Front

Diagram showing Ackermann, parallel, and Anti-Ackermann steering geometries. [24]

Cornell Ackermann Steering on Display

Steering Design

Ackermann is most useful at very low speeds and tight turns because that is when you have the least wheel slip and load transfer side to side. (Gillespie, 1992) (Team, BYU Baja, 2017)

- Baja ETS Ackermann
 - #1 Maneuverability (Oregon 2023)
- Cornell Baja Racing 50% Ackermann
 - #2 Maneuverability (Oregon 2023)
- Beaver Racing Ackermann
 - #3 Maneuverability (Oregon 2023)

Customer & Engineering Requirements - Front

Customer Requirements

- Vehicle must comply with the dimensions of SAE Baja courses
- Vehicle must have adequate ground clearance
- Vehicle must have adequate traction across all terrains
- Vehicle must be capable of safe operation over rough land terrain
- Vehicle must have agile maneuverability
- Front suspension must be robust in design (control arms, hubs, knuckles, tie rods, etc.)

Engineering Requirements

- Decrease Vehicle Width
 - Max Vehicle Width = 64"
- Increase Ride Height
 - Front Ride Height Minimum = 10"
- Increase Tire Traction
 - Scrub Radius = ~0 degrees
- Increase Capability in Rough Terrain
 - Wheel Travel = ~12" total (3:1 bump to droop)
- Increase Turn-In Angle
 - *Pro-Ackerman* = 40%-100%
- Increase Crash Durability
 - Target 40mph collision

QFD Discussion - Front

								Customer Opinion Survey								
Customer Needs	Customer Weights	Decrease Vehicle Width	ncrease Ride Height	ncrease Tire Traction	ncrease Capability in Rough Terrain	ncrease Turn-In Angle	ncrease Crash Durability	1 Poor	CI.	3 Acceptable	4	5 Excellent				
Comply with track dimensions	4	9									A	BC				
Adequate ground clearance	2		9	6	9		3			Α	С	В				
Adequate traction	Adequate traction 3				6	3	3			Α		BC				
Safe operation over rough terrain	3	6	6	3	9		9				ABC					
Agile manuverability	4	6	3	6	3	9					Α	BC				
Robust design	3		3		3		9			BC	Α					
Technical F	Inches	Inches	Degrees (Scrub Rad)	Inches (Wheel Travel)	Degrees	mph										
Technical Rec	Technical Requirement Targets					40-100	40									
Absolute Tec	Absolute Technical Importance						69									
Relative Tech	hnical Importance	÷	- 40	ი	3	9	4									
Legend																

LegendANAU #74BBaja ETSCCornell Racing

CR & ETSR Correlation

Many of the requirements from the rulebook work together with each other, leading to a more direct design path. The top 3 technical focuses for front end are as follows:

- Modulating vehicle width (track compliance)
- Increasing rough terrain capability
 (wheel travel)
- Increasing tire traction (scrub radius mitigation)

Other considerations include durability, ride height, and steering angle

-Abraham Plis-

Textbooks

Papers

- Suspension Geometry and Computation [3]
 - Ch 12: Double Arm Suspensions
- The Automotive Chassis: Engineering Principles [4]
 - Ch 1: Types of Suspension and Drive
- Analysis of Steering Knuckle of All Terrain Vehicles (ATV) Using Finite Element Analysis [5]
 - Knuckle Design/FEA
- Design and Development of Front Suspension System for an Off-Road Vehicle [6]
 - A-Arm FEA & Anti-Dive Geometry
- Design Review of
 Suspension Assembly of a
 BAJA ATV [7]
 - Lotus Shark Suspension Analysis

Online

- Suspension & Steering Geometry (Front) | Double Wishbone | Anti-Ackerman | SAE BAJA | Solidworks [8]
 - CAD Tutorial, A-Arm Geometry
- Steering Knuckle | Solidworks | 3D -Modelling | BAJA ATV [9]
 - CAD Tutorial, Knuckle
 Design

-Evan Kamp-

Papers

Textbooks

- Vehicle Dynamics: Theory and Application [23]
 - Chapter 7: Steering Dynamics
 - Calculations for Turning Radius and Viable Steering Angles
- The Science of Vehicle Dynamics Handling, Braking, and Ride of Road and Race Cars [77]
 - Chapter 5: The Kinematics of Cornering

Analysis of Ackermann Steering Geometry [74]

- Steering system for SAE Baja
 [46]
 - Ackermann vs Parallel Steering Design
- Design and Optimization of Steering Assembly for Baja ATV Vehicle [12]
 - Design of Ackerman Steering Arms

Online

- Tech Explained: Ackermann Steering Geometry [59]
 - Viable Steering Angles as a function of Slip Angle and Lateral Force
- Baja Virtual Presentation Series [79]
 - Day 8 -Steering Calculations

-Bryce Fennell-

Online

Papers

Optimal Design of Suspension System of Four-Wheel Drive Baja Racing [34]

 Suspension kinematics, shock mounting positional data

Fine-Tuning Of the Suspension System of Baja ATV [33]

- Camber angle, wheel axle path
 Redesigning the Cooper
 Union SAE Mini-Baja Front
 Suspension and Steering
 [35]
- Steering angle, double a-arm suspension system, calculations

Baja SAE, SAE International, 2023. [32]

- Competition rules and guidelines for frame/suspension integration
 TUTORIAL ON LOTUS
 SUSPENSION SOFTWARE [31]
- How to recover suspension data from the program

Lotus Shark Suspension | Tutorial [30]

- Basic overview of Lotus Shark software
- Suspension system input into program

Textbooks

Suspension Geometry and Computation [36]

- Chapter 7, Camber and scrub
- Chapter 12, double-Arm Suspension

Road and Offroad Vehicle Dynamics [58]

Suspension
 characteristics pg: 379-422

Mathematical Modeling #1 - Front

Equations, Tools, and Examples

Hole bearing stress equation for bolted connections to design against tear-out and deform [10]

Excellent example of how to perform FEA analysis on a steering knuckle to optimize design characteristics

Lotus *Shark s*oftware will help define and optimize suspension geometry, allowing hardpoints to be established [7]

Abraham | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Mathematical Modeling #1 - Front

How much bearing stress will the central knuckle hole see from the outboard cv spline during a jump?

Standard Baja Weight (with driver): 500 lb. Max Acceleration During Scenario: 3*g Drop Height: ~6 ft. Duration of Impact: 0.1 seconds Diameter of Spline: ~1" Thickness of Contact Surface: ~2"

$$F = \frac{m * \sqrt{g * h}}{t} \quad [11] \qquad \bigcirc \qquad A_b = d * t \quad \bigcirc \quad \sigma_b = 1080 psi$$

Answer can be validated by comparing to **yield strength** of billet aluminum (26,107 psi, meaning σ_b is 4% of that [13]). This tells us that **skeletonization** of the steering knuckle around the **inner contact surfaces is possible!**

Abraham | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Mathematical Modeling #2 - Front

A-Arm Design, Forces, and Inputs

FEA of a modeled A-arm showing stresses developing under a compressive load

2023 ETS SAE Baja vehicle using lower front brace mounted front suspension

Bryce | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Mathematical Modeling #2 - Front

A-Arm Design, Forces, and Inputs

Mathematical Modeling #2 - Front

2-Dimensional shear force and bending moment diagrams on the upper A-arm during a max force compression

Diagram in the Vertical Direction

Upper A Control Arm 2-Dimensional Bending Moment Diagram in the Vertical Direction

The upper A control arm must be designed to withstand a maximum bending moment of 4050 lbf*in at 13.56 in from the chassis pivot point

Bryce | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

NORTH

Mathematical Modeling #3 - Front

Diagram of Steering Radius correlated to Inner and Outer Steering Angles [24]

The above diagram and following equations used are under the assumption that the slip angles are close to or are 0° during a slow turn. To meet this condition, the chart on the right must be used to determine viable angles.

Effect of Width and Length on Viable Outer and Inner Steering Angles. These angles are calculated as a function of Lateral Force and Slip Angle [24]

Evan | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Mathematical Modeling #3 - Front

Calculating the average Steering Angle

$$\cot \delta = (\cot \delta_o + \cot \delta_i) \frac{1}{2}$$

Steering Radius being calculated using center of Mass (a)

$$R = \sqrt{a_2^2 + l^2 \cot^2 \delta}.$$

Calculating the Percent Ackerman Used

$$\% Ackermann = \frac{\delta_i - \delta_o}{\delta_i} * 100\%$$

Preliminary Measurements

Project Schedule

PROJECT: SAE Baja 24

NAU A.Y. 2023-2024					Legend:	Fr	ont		Rear		Driv	vetrain		Fram	e	All	Team																	
Project Manager: Abe F	Plis																																	
Project start date:	9/14/2023					Sept	embe	r					Octol	ber																	Nover	nber		
Scrolling increment:	5	< >				19 20	21 22	23 24	4 25 26	5 27 28	29 3	012	34	56	78	9 1	10 11 1	12 13	14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31	12	34	56	78	9 10	11 12	. 13
Milestone description	Responsible Sub-Team	Assigned To	Progress	Start	Days	тw	T F	s s	мт	∀т	FS	s s m	T W	TF	s s	M 1	т w	TF	s s	мт	ΨТ	FS	s M	т м	T F	s s	мт	wт	F S	s M	т м	T F	s s	м
Frame Completion in CAD	Milestone			10/31/2023	1																						₽							
Presentation 1	All Team	NłA	0%	9/12/2023	7																													
Major Sub-System Decisions	All Team	Team Leads	0%	9/15/2023	7																													
Wire Frame	Frame	Cooper Lead	0%	9/12/2023	15																													
Define Front Suspension Points & Begin CAD	Front	Bryce Lead	0%	9/20/2023	7																													
Define Rear Suspension Points & Begin CAD	Rear	Seth	0%	9/20/2023	7																													
Define Drivetrain Points & Begin CAD	Drivetrain	Henry Lead	0%	9/20/2023	7																													
Measure Hailey & Design Rollcage	Frame	Cooper Lead	0%	9/18/2023	10																													
Concept Generation & Selection	All Team	Team Leads	0%	9/26/2023	11																													
Presentation 2	All Team	N/A	0%	10/3/2023	7																													
Packaging Integration (Wheelbase, car length, etc.)	All Team	Cooper & Henry Lead	0%	10/3/2023	8																													
Report 1 & Webiste 1	All Team	Seth	0%	10/20/2023	8																													
Finalize Frame (footbox, lower rear triangle, rollcage)	Frame	Names	0%	10/11/2023	22																													

Project Schedule

Progress: On-Track...but need to be more aggressive!

Next Steps (~1-1.5 Week(s) Out): wireframe, front/rear hardpoints & geometry, initial powertrain calcs & geometry

Abraham | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Project Budget

	Category	Relevant Items	Approximated Cost
1	Vehicle Expenses	Raw materials, hardware, engine & drivetrain components, tooling, harness & safety equipment, labor (if out- sourced manufacturing)	\$15,000
2	Spare Parts	Raw materials, labor (if out-sourced manufacturing), hardware	\$7,500
3	Competition Expenses	Registration, travel (hotel rooms, vehicle rentals, gas, etc.)	\$4,500
4	Contingency (5%)	Unpredicted Expenses	\$1,350
		Total	\$28,350

Fundraising Plan This is a steep budget that won't be covered by grants or singular donations...turn to sponsors!

Potential Sponsors:

Copper State, Mother Road, Findley Toyota, Home Depot, ETM, Gore, HASS, N.A.P.A., etc.

Sponsor Methodology:

Request funding in return for representation at competition via customized livery

Lars | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Rear Suspension Team

Joey Barta, Lars Jensen, Seth Deluca

Benchmarking #1 – Rear Trailing Link

LSU Baja Bengals

RIOT Racing

1st in suspension (4th overall)

6th in suspension (21st overall)

Blue Jays Racing

43rd in suspension (30th overall)

Seth| SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Benchmarking #2 – Rear Double A-Arm

ETS – 3rd in suspension (5th overall)

Oregon State University – 3rd in maneuverability (2nd overall)

Cornell University – 2nd in maneuverability (3rd overall)

Benchmarking #3 – Rear Single H-Arm

Northern Arizona University (2nd in suspension, 5th overall)

Case Western Reserve University (6th overall)

Customer & Engineering Requirements - Rear

Customer Requirements

- Tunability
- Serviceability
- Reliability
- Ease of manufacturing
- Low cost
- Maximum Traction
- Maneuverability

Engineering Requirements

- Decrease weight (lb.)
 - Rear suspension under 50 lbs.
- Increase strength (psi)
- Increase rearward axle path (in.)
 - 1 in. of rearward movement
- Increase linkage radii (in.)
 - 22 in. camber links
- Increase ground clearance(in)
 - 8 in. of ground clearance
- Vehicle width (in.)
 - Maximum vehicle width of 64 in.
- Decrease CV axle angle (degrees)
 - 180 degrees

QFD Discussion - Rear

System QFD			rojec	t:	Lumberjack Motorsports SAE Baja Rear Suspension											
-,			Date:		9/19/23											
Decrease wei	/			Input areas are in yellow												
Increase stren	gth	-3	/										-			
increase rearward a	ixle path												_			
Increase linkage	radii	-1									Legend	ł				
Increase ground cle	arance	-6	3	1		\sim				Α	CWRU	JM .				
Vehicle widt	ı	1	3		6	2				В	RIOT E	3aja				
Decrease CV axle	angle		3	-2	1					С	TS BA	JA				
			Teo	hnica	Requ	ireme	nts		Cus	tome	r Opini	ion Su	rvey			
Customer Requirements	Customer Weights	Decrease weight	Increase strength	increase rearward axle path	Increase linkage radii	Increase ground clearance	Vehicle width	Decrease CV axle angle	1 Poor	2	3 Acceptable	4	5 Excellent			
Tunability	2	2	3	8	7	3	2	7	С	А			В			
Servicability	2	2	6						Α		BC					
Reliability	5	3	9	3	2			7			Α	В	С			
Ease of manufacturing	3	6	7	1	1		1	1		С	Α		В			
Low cost	5	9	9	3	3		1	3			Α	С	В			
Maximum Traction	2	7		8	8		3	1				В	AC			
Maneuverability	4	5	1	8	6	5	7	1				AB	С			
Technical Requirement Units			Psi	in	in	i	i	degrees								
Technical Requirem	<50	٩N	۲.	22	8<	<64	180									
Absolute Tech	120	133	97	82	26	46	73									
Relative Tech	2	1	3	4	7	6	5									

Seth | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

NORTHERN

-Joey Barta-

Textbooks

- W. F. Milliken and D. L. Milliken, Race Car Vehicle Dynamics [48]
 - Highly regarded as the "bible" of suspension engineering. Authors developed many of the vehicle dynamics theories in the book
- R. G. Budynas, Shigley's Mechanical Engineering Design [22]
 - Useful source for failure
 prevention as well as design
 for mechanical elements

• J. C. Dixon, Tires, Suspension and Handling [49]

 Detailed coverage of the theory and practice of vehicle cornering and handling

Papers

- •Suspension Types SUSPROG [50]
 - •illustrates potential rear suspensions with downloadable excel files pertaining to each.

•J. Isaac-Lowry, "Suspension Design: Types of Suspensions," [51]

•short list of applicable designs to reference in the early stages of design

•SLASIM: Suspension Analysis Program [52]

•software through MATLAB that analyzes functionality of suspension kinematics

Online

•Setup Suspension 101 [79]

- •Article expands on preload, compression, rebound, ride-height, and crossover spacers tuning.
- Suspension Geometry Calculator [65]
 - Provides an intuitive, simple suspension geometry calculator

-Seth DeLuca-

Textbooks

- Vehicle Suspension
 System Technology and
 Design [60]
 - Chapter 4: Analysis and Design of Suspension Mechanisms
- Geometric Design of Independent Suspension Linkages [61]
 - Chapter 2.2: different mounting systems and joints

Papers

- Fine-Tuning of the Suspension System [62]
 - Includes information regarding things to look out for when tuning suspension
- Design Analysis of 3 Link
 Trailing Arm [63]
 - In depth to 3-Link Trailing Arm
- Design Analysis of H-arm with Camber Link [64]
 - Looks into H-arm Suspension

Online

- Racing Aspirations suspension Geometry [65]
 - Quick suspension software analysis
- Spring rate and wheel rate calculator [66]
 - Calculates shock angle when given different parameters based on a simple geometry

-Lars Jensen-

Textbooks

- Performance Vehicle Dynamics: Engineering and Applications [67]
 - Chapter 7 Suspension Kinematics, Chapter 8 – Dynamic Modelling of Vehicle Suspension
- The Multibody Systems Approach to Vehicle Dynamics [68]
 - Chapter 4 Modelling and Analysis of Suspensions Systems

Suspension Design and testing of an All-Terrain Vehicle using Multi-body dynamics Approach [69]

Papers

- Flow of design calculations for suspension parameters
- Optimal Design of Suspension System of Fourwheel Drive Baja Racing [70]
 - Geometric design of rear suspension
- Design and Optimization of Rear Wheel Assembly for All-Terrain Vehicle [71]
 - FEA analysis of rear knuckle and hub
 - Lars | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Online

- Float 3 EVOL RC2 Factory Series Owner's Manual [72]
 - Shock service and tuning
- A Square C & D "BAJA ATV Videos" Playlist [73]
 - SolidWorks modeling of suspension systems and knuckles

Mathematical Modeling #1 - Rear

Mathematical Modeling #3 - Rear

How does change in upper a-arm position/length affect camber gain?

Goal: design a rear suspension with 90° camber at unsprung weight and negative camber (around 3-6°) under hard cornering.

NORTHERN ARIZONA UN®VERSITY

Joey | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Drivetrain Team

Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger

Benchmarking #1 – Drive

New CVT Sheave Geometry with Appropriate Total Range

Total gear ratio change

Researched other transmissions to find out what is a good total transmission ratio change

- Michigan 4.0:1 to .75:1 total range 5.333
- Cornell 2.23:1 to .5:1 total range 4.46
- Gaged 3.9:1 to .9:1 total range 4.333
- New ECVT 2.66:1 to .588:1 total range 4.53

Benchmarking #2 - Drive

Purdue University

Rear End Optimization Integrated CV Cups

Northern Arizona University

University
Benchmarking #3 - Drive

CV joint and U-joint Comparison

ETS Baja CV Axles

CV joint

U-joint

Front End Optimization

Use CV joint rather than U-joint

- No binding with CV joint
- Increased range of angle
- Load is equally distributed

Michigan Baja Front End

Jarett Berger | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Customer & Engineering Requirements - Drive

Customer Requirements

- High top speed
- Maximum efficiency
- High torque
- High service life
- Low weight
- High transmission range

Engineering Requirements

- 40mph top speed
- 80% drivetrain efficiency
- 400lb-ft of torque to the wheels
- 1000-hour service life
- Total drivetrain weight (w/out engine) 60lbs
- 1:4.5 total transmission range

QFD Discussion - Drive

-							input areas are in gen			^{ow}				
1	top speed													
2	drivetrain efficiency			1										
3	torque to the wheels		6							Legend				
4	service life									A	Corr	ell 202	3	
5	total system weight (w/out engine)	engine)		3						в	NAU	2021#	21	
6	total transmission range			6						С	NAU	2023 #	74	
7	Meets HROE Guard specifications						-9							
				Taal	hnian	Dea	irom	ante		Cuch		Onini	on Cu	
	Customer Needs	Customer Weights	op speed	Jrivetrain efficiency	orque to the wheels	service life	otal system weight (w <i>f</i> out engine)	otal transmission range	Meets HROE Guard specifications	f Poor		3 Acceptable		5 Good
1	Customer Needs	5	ت و	6	ت ۵	2	<u>∓</u> 8	- -		<u> </u>			B	0
2	rasu High effecteour	2	9	9	6	8	2	8	2	ا د		P		<u></u>
2	(act popularities	5	2	6	6	2	9	9	1	H č				
ă	durable	1	1	8	1	9	1	4	9	<u> </u>		- 0C		B
- 1	con eraul and no fact	4	0	0		2	2	4	1	- C		AC	- D	<u> </u>
0	Call claw and go rase	- + E	- 3	0	1	0	- 3	3	-	<u> </u>			-	<u></u>
~	Appleaded Black	0	1 0		<u>'</u>	0	0	-					<u> </u>	<u> </u>
-	Aestretically Pleasing	3	3		3	3	3	3	3				~	•
°														
3														
10														
-11											1	_		_
	Technical Req	uirement Units	МРН	Unitles	Lbf/Ft	hours	bs	Unitless	N/A					
	Technical Requir	ement Targets	40	80	400	1000	60	01:04.5	N/A					
	Absolute Technic	cal Importance	56	25	62	8	29	65	9					
	Relative Technic	al Importance	-	-	-	-	-	-	00	-				
	rieiduve rechini	var importance	4	9	6	2	9	N	-					

Drivetrain QFD

Henry Van Zuyle | SAE Baja '24 | F23toSp24_09 | Sep 19,

-Henry Van Zuyle-

Textbooks

Papers

- Shigley's Mechanical Engineering Design [22]
 - Chapter 17, Flexible Mechanical Elements
- Machinery's Handbook
 [25]
 - Chapter, Gearing

Henry Van Zuyle | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

- US Patent US20180172150A1, Electromechanically actuated continuously variable transmission system and method of controlling thereof [37]
 - ETS ECVT patent
- An Experimentally-Validated V-Belt Model for Axial Force and Efficiency in a Continuously Variable Transmission [38]
 - Factors that effect CVT efficiency
- Modeling and Tuning of CVT Systems for SAE® Baja Vehicles [40]

Online

- Shaft Splines &
 Serrations [42]
 - Spline strength and geometry
- Altair Motion View: CVT Model [43]
 - Helped me develop my CVT design software

NORTHERN

-Ryan Fitzpatrick-

Textbooks

Papers

- Shigley's Mechanical Engineering Design [22]
 - Chapters 13 & 14, Gears – General & Spur and Helical Gears
- Machinery's Handbook [25]
 - Chapter 12, Gearing

- Methodology for Designing a Gearbox and its Analysis – IJERT [56]
 - Gearbox Design General
- Design and Analysis of Gearbox for SAE Baja Competition – IJERT [55]
 - Gearbox Design for SAE
- Lightweight Design of Gearbox Housing of Baja Racing Car Based on Topology Optimization – Journal of Physics [81]
 - Gearbox Housing Design for optimization

Ryan Fitzpatrick | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

- Gear Design by AGMA Theory – The Engineering Blog [82]
 - AGMA theory source that includes lube factor
- A Look at Belt, Chain and Gear Drive Technology – Power Transmission Engineering [83]
 - Power Transmission Options Discussion
- Chain Sprocket Calculator [84]
 - Used to calculate the chain drive option

-Donovan Parker

Textbooks

- Shigley's Mechanical Engineering Design [22]
 - Chapter 17, Flexible
 Mechanical Elements
- Machinery's Handbook [25]
 - Machine Elements -> Flexible Belts and Sheaves/ Transmission Chains

- Papers
 - Design Analysis and Fabrication of the Powertrain System for All-Terrain Vehicle – IJERT [80]
 - Calculations
 - SAE Baja '24 Rule Book [89]
 - Belt, Gear, and Chain Drives
 - Design of a Drivetrain for SAE Baja Racing Off-Road Vehicle – IJAEMS [85]
 - Powertrain

- Belts and Chains Play to Their Strengths – Power Transmission Engineering [88]
- Belts/ Other Drives Baja SAE Forums [87]
- Belt and Chain CVT: Dynamics and Control – Mechanism and Machine Theory [86]

-Jarett Berger

Papers

Textbooks

- Shigley's Mechanical Engineering Design [22]
 - Chapter 14, Spur and Helical Gears, Chapter 18, Power Transmission
- Machinery's Handbook
 [25]
 - Gears, Splines, and Cams

- Spur Gear Designing and Weight Optimization – IJERT [45]
 - Designing spur gear
- Design, Analysis, and Simulation of a Four-Wheel-Drive Transmission for an All-Terrain Vehicle – SAE [54]
 - 4WD analysis
- Design and Analysis of Gearbox for SAE Baja Competition – IJERT [55]
 - Gearbox analysis

Jarett Berger | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

- Methodology for Designing a Gearbox and its Analysis - IJERT [56]
 - Design approach for gearbox
- Design and Analysis of Gearbox with Integrated CV Joints – Blog [57]
 - CV joints integrated with output shaft

Mathematical Modeling #1 - Drive

$$\Phi_d = \pi - 2sin^{-1} \frac{D-d}{2C} = 2.282 \text{rads} = 130.757^\circ$$

$$\Phi_D = \pi + 2sin^{-1} \frac{D-d}{2C} = 4.001 \text{rads} = 229.243^\circ$$

 $L = \sqrt{4C^2 - (D-d)^2} + \frac{1}{2}(D\Phi_D + d\Phi_d) = 110.92 \text{ in.} = 9.24 \text{ ft}$

$$F_1 = \frac{T \times 12}{r} = 1048 \ lbf \ (Tension \ Side \ Force)$$

$$F_2 = F_1 - \frac{2T}{d} = 0 \ lbf \ (Slack \ Side \ Force)$$

Where:

 $\Phi_d
 = Smaller pulley wrap angle
 <math>
 \Phi_D
 = Larger pulley wrap angle
 L = Belt length
 <math>
 F_1
 = Tension side force
 F_2
 = Slack side force$

Wrap angle and Centrifugal Force

Creep prevention and Maximum power output and efficiency for 4WD integration

- Wrap angle calculation
- Belt Length calculation
- Centrifugal force calculation

Mathematical Modeling #2 - Drive

If $\beta \geq \pi$

$$T_0(lbf) = \frac{2\sin\left(\frac{\beta}{2}\right) * \left[2F_{Clamp}\tan\left(\frac{\phi}{2}\right) + \frac{1}{12}M_{Belt} * R^2 * \omega^2\right]}{\cos\left(\frac{1}{2}(\beta - \pi)\right) * (e^{\mu_e\beta} + 1)}$$

If $\beta \leq \pi$

$$T_0(lbf) = \frac{2\sin\left(\frac{\beta}{2}\right) * \left[2F_{Clamp}\tan\left(\frac{\phi}{2}\right) + \frac{1}{12}M_{Belt} * R^2 * \omega^2\right]}{\cos\left(\frac{1}{2}(\pi - \beta)\right) * (e^{\mu_e\beta} + 1)}$$

 $\tau_{Max_{Secondary}}(ft.*lbf) = (T_{Taught_Secondary} - T_{Slack_Secondary}) * \frac{Radius_{Secondary}}{12}$ $T_{1} = T_{0}e^{\mu_{e}\beta}$ $T_{1\ Primary}(lbf) = T_{1\ Secondary}$

Governing Equations for CVT Geometry and Forces

CVT Geometry and actuation force requirements

Utilized a matlab script to iterate through

- CVT sheave geometry to ensure large enough total ratio change
- Secondary cam geometry to generate sufficient clamping force

Mathematical Modeling #2 - Drive

CVT design with non-optimized components

Results

- Center to center is 9.5 inches
- Sheave angle is 12.77 degrees
- Sheave diameters clear each other and the motor
- CVT has a competitive range of 4.533
- Max actuation force from primary is 301 LbF

Mathematical Modeling #3 - Drive

Chain Drive Basic Sizing

Gearbox Basic Sizing

By taking the torques and angular velocity on each stage the minimum ANSI Chain Number of #50 was determined. These values were input into an online sprocket calculator [84] and the above dimensions were determined for a chain drive.

Rear Power Transmission

Did research and basic calculations to determine if power should be transmitted via chain or gear drive.

- Gearbox is slightly more efficient (Chain drives have efficiencies "up to about 98%" [83] versus gearboxes efficiencies of "less than 2%" [22]).
- Gearbox takes up 60% less space (see modeling to the left)
- Gearbox requires less maintenance [83]
- The top teams run gearboxes

From these calculations, we have decided to move forward with a gearbox as opposed to a chain drive.

Mathematical Modeling #4 - Drive

Preliminary Gearbox Design

Rear Gearbox Design

Looking to achieve a reduction of ~9.2 via a two-stage compound gear train while minimizing the space occupied by the gearbox to allow for better rear suspension geometry.

Diametral Pitch : $P = \frac{N}{d}$; $P(1st Stage) = 16 \frac{teeth}{in}$; $P(2nd Stage) = 12 \frac{teeth}{in}$

 $\label{eq:Train Value: e = } \frac{\textit{product of driving tooth numbers}}{\textit{product of driven tooth numbers}} \;;\;\; e_{\textit{target}} = \; \frac{1}{9.2}$

Minimum Pinion Teeth : $N_{P,min} = \frac{2k}{(1+2m)sin^2(\Phi)}(m + \sqrt{m^2 + (1+2m)sin^2(\Phi)})$

where... k = 1 (for full-depth teeth)

 Φ = 20deg (standard pressure angle)

Input RPM = 1200

Output RPM = 120-140

Gear		d (diameter, in)	N (number of teeth)
	2	1.5	24
:	3	4.5	72
	4	1.83	22
:	5	5.33	64

Mathematical Modeling #5 - Drive

Preliminary Gear Design

	Gear 1	Gear 2
Teeth	12	49
Pitch Dia. (in)	1	4.08333
Dia Pitch (teeth/in)	12	12

Gear Calculations

Front Gearbox Design

- 1 stage gear reduction to achieve more torque and steering traction
- Size of gear teeth will minimize front end space so that suspension and steering designs are optimized

Table 13-2Tooth Sizes in General Uses

 Diametral Pitch P (teeth/in)

 Coarse
 2, $2\frac{1}{4}$, $2\frac{1}{2}$, 3, 4, 6, 8, 10, 12, 16

Minimum Teeth for Pinion: $N_p = \frac{2k}{3sin^2\phi} (1 + \sqrt{3sin^2\phi})$ Maximum Teeth for Gear: $N_G = \frac{N_p sin^2(\phi) - 4k^2}{4k - 2N_p * sin^2(\phi)}$ K (Full-Depth) = 1 Pressure angle Φ = 20deg

Frame Team

Cooper Williams, Gabriel Rabanal, Antonio Sagaral

Benchmarking – Frame

ETS Rear Brace 1st overall in Oregon 2023 University of Michigan Rear Brace 4th overall in Oregon 2023

Cornell University Front Brace 4th overall in NY 2020

Antonio Sagaral | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Customer & Engineering Requirements - Frame

Customer Requirements

- Lightweight
- Durable
- Easy to manufacture
- Satisfy SAE Baja frame guidelines
- Affordable
- Maneuverable
- Rigid
- Fast

Engineering Requirements

- Steel carbon content greater than 18%
- RRH angle between 0 and 20 deg
- Primary members minimum specs: 0.984in O.D. and 0.062in wall thickness
- Secondary members minimum specs: 1.0in O.D. and 0.035in wall thickness

Roll Cage, Primary Members (filled in black), Rear Braced Frame

Cooper Williams | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

QFD Discussion - Frame

	System QFD		Pro	oject: Date:	Baja 9/14/	24 Fr a 23	ame						
2	Decrease weight	-	\sim										
3	Decrease length of body		6	\sim					l ecer	ы			
4	Decrease width of body		3	-9					<u>د</u> وودا	Marille	unu kaiarina		
5	Decrease Cost	-	-9	3	3				B	Allas://			
õ	increase aerodunamics		-3	-6	3	-3			c	Allas://I		ull.edu/aku	لعلقاه
7	Increase strength of frame		6	-3	-9	-6		\sim	0				
•	intercase overlight of Harris		T.					10	Cust			C.	
		stomer Weights	crease weight	crease length of body	crease width of body	crease Cost	ease aerodynamics	rease strength of frame	Poor		Acceptable		Excellent
	Customer Needs	ت ت	Ğ	De	De	ő	Ë	입	~	€N	ب	4	ŝ
1	Rigid	3	1	6	3	3	1	9				ABC	
2	Easy to manufacture	3	3	3	1	3	6	3			<u> </u>	AC	100
3	Maneuverable	2	3	9	9	1	1	3					ABL
4	Aesthetics	1	3	1	3	3	9	0				<u> </u>	A
0 C	Catiofy SAE Paia Eramo Guidlingo	2	2	1	2 C	2	1	0	<u> </u>		AC		
7	Satisty SAE Baja Harrie Octobiles Stable	4	1	2	a a	1	2	8					ADC
8	Fast	3	6	3	3	q	9	3				BC	~~
9	Liahtweight	4	9	6	3	9	3	6				ABC	
10	Affordable	3	9	6	3	9	6	6			ABC		
	Technical Req	uirement Units	sdi	. <u></u>	.5	÷	lbf	psi					
	Technical Requir	rement Targets		2 64	964								
	Absolute Techni	cal Importance	120	112	120	134	100	154					
	Relative Techni	cal Importance	е	9	4	N	9	÷					

Main Customer Needs

- Satisfies SAE Rules
- Lightweight
- Affordable
- Easy to manufacture

Main Engineering Requirements

- Increased frame strength
- Decrease cost
- Decrease weight
- Decrease body width

Gabriel Rabanal | SAE Baja '24 | F23toSp24_09 | Sep 19,

-Gabriel Rabanal-

Textbooks

Papers

- Materials selection in mechanical design [18]
 - Ch 5-6: material selection process
- The Automotive Chassis: Engineering Principles [14]
 - Ch 6: loading effects on chassis types, braking behaviors

- A novel approach for design and analysis of an all-terrain vehicle roll cage [15]
 - Impact analysis for rear braced frame design
- Computational analysis for improved design of an SAE Baja frame structure [16]
 - Rear braced frame analysis and materials discussion
- Design and FE analysis of chassis for solar powered vehicle [17]
 - Frame material comparison

- Mini Baja Vehicle Design Optimization [19]
 - Bracing analysis/failure testing
- SolidWorks BAJA SAE Tutorials - How to Model a Frame (Revised) [20]
 - CAD Tutorial, Design of SAE Baja frame in SolidWorks

-Antonio Sagaral-

Textbooks

Papers

- Shigley's Mechanical Engineering Design [22]
 - Ch 2-22: Materials selection
- Fundamentals of Machine Component Design [29]
 - Ch 11: Rivets, Welding, and Bonding

- Design, Analysis and Optimization of a BAJA-SAE Frame [39]
 - FEA Analysis and Material options
- Design and Construction of a Space-frame Chassis [41]
 - Suspension forces and FEA Analysis
- DESIGN AND STRUCTURAL ANALYSIS OF BAJA FRAME WITH CONVENTIONAL AND COMPOSITE MATERIALS [44]
 - Impact analysis and stress calculations

Antonio Sagaral | SAE Baja '24 | F23toSp24_09 | Sep 19,

Online

- [Front Impact Test & Meshing] BAJA SAE Roll Cage/Frame Design in ANSYS Workbench Static Structural [53]
 - Impact testing points and strategies
- Baja SAE
 Frame Investigations [47]
 - Investigation of rear vs front brace frames

2023

-Cooper Williams

Textbooks

Papers

- Shigley's Mechanical Engineering Design [22]
 - Chapter 9: Welding, Bonding, and the Design of Permanent Joints
- The Automotive Chassis: Engineering Principles [14]
 - Ch 6.1: Vehicle and body center of gravity

- Design and Analysis of Chassis for SAE BAJA Vehicle [19]
 - Member Stress Analysis
- Mathematical Model for Prediction and Optimization of Weld Bead Geometry in All-Position Automatic Welding of Pipes [25]
 - Strength of Welds given several factors
- Design, analysis and optimization of all-terrain vehicle chassis ensuring structural rigidity [21]
 - Provides analysis for different frame impacts

- Design Judging Discussion [28]
 - Discusses how some judges approach scoring vehicles
- Getting Started with weldments in SOLIDWORKS [27]
 - Introduction to Weldments, Manufacturing

Mathematical Modeling #1-Frame

Densities of Suitable Steels

Material	Density (lb/in^3)
1018 LC, CD Steel	0.284
1020 LC, CD Steel	0.284
4130 MC, CD Steel	0.284

Table: Density Comparison

Material/Cost Comparison

- Each year, about 80 feet is purchased for frame manufacturing
- Only use about 90% of the 80ft

 $\rho = \frac{m}{V}$ ρ : density, lb/in³ m: mass, lbm V: volume, in³

Cooper Williams | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Mathematical Modeling #2 - Frame

Steel Type (AISI)	1018	4130	1020	1020
O.D. (in)	1	1	1	1.125
Wall thickness (in)	.12	.12	.12	.12
S_b (klb*in)	3.513	4.128	3.323	4.381
A_s (in ²)	.3317	.3317	.3317	.3789

Equations

•
$$S_b = \frac{S_y I}{c}$$

• $A_s = \pi (\frac{D_o}{2})^2 - \pi (\frac{D_o}{2} - t_{wall})^2$

Frame Material Comparison Calculations performed for primary members SAE Specifications:

- Minimum OD of 1"
- Standard minimum thickness of .12"

 D_{o}

Gabriel Rabanal | SAE Baja '24 | F23toSp24_09 | Sep 19,

uwall

Mathematical Modeling #3 - Frame

Primary Member Tube Specs

Equations

• $S_b = \frac{S_y I}{c}$

• $K_b = EI$

	Base 1018 requirements	4130	4130	4130	
O.D. (in)	0.984	1	1.125	1.25	
I.D. (in)	0.748	0.76	0.959	1.12	
Wall thickness (in)	0.118	0.12	0.083	0.065	
K_b (klb*in)	948.6	948.6	1076.2	1235.5	
S_b (klb*in)	3.513	4.128	4.163	4.301	

Antonio Sagaral | SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

Thank you!

NORTHERN ARIZONA UNIVERSITY

SAE Baja '24 | F23toSp24_09 | Sep 19, 2023

- [1] "Nau Sae Baja team on Instagram: 'so excited to see where our team members end up in the next few years...and that's a wrap!,'" Instagram, https://www.instagram.com/p/COd0nAALO0O/?utm_so urce=ig_web_copy_link&igshid=MzRIODBiNWFIZA (accessed Sep. 12, 2023).
- [2] "Baja ETS on Instagram: 'Rencontre d'infromation le 21 septembre au local D-2027! il n'est pas trop tard pour joindre l'équipe de baja ets. tous les programes sont les bienvenues. Au Plaisir de vous rencontrer'" Instagram,

https://www.instagram.com/p/Ciu68AvuA_X/?utm_s ource=ig_web_copy_link&igshid=MzRIODBiNWFIZA (accessed Sep. 12, 2023).

- [3] J. C. Dixon, "12 Double Arm Suspensions," in *Suspension* geometry and computation, Chichester, U.K.: Wiley, 2009
- [4] J. Reimpell, H. Stoll, and J. W. Betzler, "1 Types of Suspension and Drive," in *The Automotive Chassis: Engineering principles*, Warrendale: SAE International, 2001
- [5] S. V. Dusane, M. K. Dipke, and M. A. Kumbhalkar, "Analysis of steering knuckle of all terrain vehicles (ATV) using finite element analysis," IOP Conference Series: Materials Science and Engineering, vol. 149, p. 012133, 2016. doi:10.1088/1757-899x/149/1/012133

- [6] I. Hiremath, A. Nalawade, and J. Patil, "Design and development of front suspension system for an off-road vehicle," International Journal of Research in Engineering, Science and Management, https://journal.ijresm.com/index.php/ijresm/article/view /79 (accessed Sep. 14, 2023).
- S. Sharma, Design Review of Suspension Assembly of a Baja ATV - IRJET, https://www.irjet.net/archives/V7/i5/IRJET-V7I51227.pdf (accessed Sep. 15, 2023).
- [8] "Suspension & amp; Steering Geometry (front) | double wishbone | anti-ackerman | SAE baja | solidworks,"
 YouTube,

https://www.youtube.com/watch?v=KuSQnUwzi-c (accessed Sep. 14, 2023).

- [9] "Steering knuckle | Solidworks | 3D modelling | Baja ATV," YouTube, https://www.youtube.com/watch?v=sCCMHqDhjmw (accessed Sep. 14, 2023).
- [10] "Bearing stresses (contact stresses)," Bearing Stresses | Engineering Library, https://engineeringlibrary.org/reference/bearingstress-air-force-stress-manual (accessed Sep. 15, 2023).
- [11] SAE Mini Baja Frame Analysis, https://ceias.nau.edu/capstone/projects/ ME/2014/SAE-MiniBaja/team_01/team_01-engineeringanalysis-report.pdf.

- [12] "CV Joints," CV joints, https://www.aa1car.com/library/cvjoint1. htm (accessed Sep. 15, 2023).
- [13] H. V. Heer, "Billet aluminium composition, properties, uses," ThePipingMart Blog, https://blog.thepipingmart.com/metals/billetaluminium-composition-propertiesuses/#:~:text=Billet%20Aluminium%20Mechanical%2 OProperties,(up%20to%20180%20MPa). (accessed Sep. 15, 2023).
- [14] J. Reimpell, H. Stoll, and J. W. Betzler, "6 Chassis and vehicle overall," in The automotive chassis : engineering principles, 2nd ed. Oxford: Butterworth-Heinemann, 2001.

- [15] R. Soundararajan, R. Ajith, C. Mahesh kumar, U. Sabarivasan, and J. Sonu Mourya, "A novel approach for design and analysis of an all-terrain vehicle roll cage," in Materials today : proceedings, 2021, vol. 45, pp. 2239–2247. doi: 10.1016/j.matpr.2020.10.224.
- [16] N. Noorbhasha, "Computational analysis for improved design of an SAE Baja frame structure," ProQuest Dissertations Publishing, 2010.
- [17] D. Patel, V. Jasani, D. Shah, and A. Lakdawala, "Design and FE analysis of chassis for solar powered vehicle," in Materials today : proceedings, 2022, vol. 62, pp. 1626–1631. doi: 10.1016/j.matpr.2022.04.137.

- [18] M. F. Ashby, Materials selection in mechanical design, 4th ed. Amsterdam ; Butterworth-Heinemann, 2010.
- [19] J. Hastie, "Mini Baja vehicle design optimization," Northeastern University, https://repository.library.northeastern.ed u/downloads/neu:376750?datastream_id =content (accessed Sep. 18, 2023).
- [20] SOLIDWORKS. "SolidWorks BAJA SAE Tutorials - How to Model a Frame (Revised)" YouTube, Sept. 26, 2010 [Video file]. Available: https://www.youtube.com/watch?v=7ZTI FgUZ1cY [Accessed: Sept. 18 2023].

- [21] S. Jacob, V. Thiruvarasan, S. Surendhar, and R. Senthamizh, "Design, analysis and optimization of all terrain vehicle chassis ensuring structural rigidity," Science Direct, <u>https://www-sciencedirect-</u> <u>com.libproxy.nau.edu/science/article/pii/S22147853</u> 2101083X (accessed Sep. 18, 2023).
- Budynas, R.G. and Nisbett, J.K. (no date)
 Loose Leaf for Shigley's Mechanical
 Engineering Design 11th. Available at:
 https://www.directtextbook.com/isbn/97812
 60407648 (Accessed: 19 September 2023).

- [23] Jazar, R.N. (2008). Steering Dynamics. In: Vehicle Dynamics: Theory and Application. Springer, Boston, MA.
- [24] E. Oberg *et al., Machinery's Handbook*. South Norwalk, CT: Industrial Press, Inc., 2020.

report.pdf

- [25] C. Sommitsch and C. Sommitsch, Numerical Modelling and Simulation of Metal Processing. Basel, Switzerland: MDPI - Multidisciplinary Digital Publishing Institute, 2021. 020.
- [26] C. Bennett, E. Lockwood, A. Mcclinton, R. Mcree, and C. Team, "SAE Mini Baja Frame Analysis Analysis of the Baja Frame Document." Accessed: Sep. 19, 2023.
 [Online]. Available:

https://ceias.nau.edu/capstone/projects/ME/2014/SAE -MiniBaja/team_01/team_01-engineering-analysis-

- [27] Hawk Ridge Systems. "Get Started with Weldments in SOLIDWORKS," <u>www.youtube.com</u>. <u>https://www.youtube.com/watch?v=mruur6CUrQ0</u> (accessed Sep. 19, 2023).
- [28] "Design Judging Discussion," Official Baja SAE Forums. <u>http://forums.bajasae.net/forum/design-judging-discussion_topic2106.html</u> (accessed Sep. 19, 2023).
- [29] R. C. Juvinall and K. M. Marshek, Fundamentals of machine component design. Hoboken, Nj: Wiley, 2020.

- [30] S. Patil, "Lotus Shark Suspension | Tutorial," Youtube, 4 1 2022. [Online]. Available: https://www.youtube.com/watch?v=IJdWphDkFtY. [Ac cessed 17 9 2023].
- [31] A. CALCULATIONS, "LIVE TUTORIAL ON LOTUS SUSPENSION SOFTWARE," Youtube, 22 8 2020.
 [Online]. Available: https://www.youtube.com/watch?v=9RPZk pUpUm8. [Accessed 17 9 2023].
- [32] S. Baja, "Baja SAE," SAE International, 2023. [Online]. Available: https://www.bajasae.net/cdsweb/gen/D ocumentResources.aspx. [Accessed 17 9 2023].

- [33] P. A. Nitish Malik, "Fine-Tuning Of the Suspension System of Baja ATV," *Journal of Engineering Research and Application*, vol. 7, no. 8, pp. 1-5, 2017.
- [34] J. C. X. S. Aoqi Wang, "Optimal Design of Suspension System of Four-Wheel Drive Baja Racing," *Journal of Physics: Conference Series,* vol. 1, no. 1, pp. 3-9, 2021.
- [35] R. W. L. Barkovitz, "Redesigning the Cooper Union SAE Mini-Baja Front Suspension and Steering," The Cooper Union Albert Nerken School of Engineering, 2006.

[36] J. C. Dixon, Suspension Geometry and Computation, West Sussex: Wiley, 2009

Anglehart Et Al, Ecole de

[37]

- Technologie Superieure, "Electromechanically actuated continuously variable transmission system and method of controlling thereof", US20180172150A1, July 14, 2020
- [38] Matthew James Messick, An Experimentally-Validated V-Belt Model for Axial Force and Efficiency in a Continuously Variable Transmission, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2018

- Y. Chandra, "International Journal of Science and Research (IJSR)," Design, Analysis and Optimization of a BAJA-SAE Frame, vol. 9, no. 2, pp. 617–626, Feb. 2020, Accessed: Sep. 18, 2023. [Online]. Available: https://www.ijsr.net/archive/v9i2/SR20208233756.pdf
- [40]
 - Skinner, Sean Sebastian, "Modeling and Tuning of CVT Systems for SAE[®] Baja Vehicles" (2020). Graduate Theses, Dissertations, and Problem Reports. 7590.

NORTHE

[41] Brendan. J. W. Waterman , "Design and Construction of a Space-frame Chassis," Nov. 2011.

[42] "CVT Model".

Altair.com.https://2022.help.altair.com/2022.1/hwd esktop/mv/topics/motionview/cvt_scooter_cvt_mod el_r.htm

[43]

Shaft Splines &

Serrations. Engineeringproductdesign.com. https://e ngineeringproductdesign.com/knowledgebase/splines-serrations/

[44] P. D. RAJA RAO, CH. NARESH, and B. S. S. PHANISANKAR, "INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH AND ENGINEERING TRENDS," DESIGN AND STRUCTURAL ANALYSIS OF BAJA FRAME WITH CONVENTIONAL AND COMPOSITE MATERIALS, vol. 5, no. 7, pp. 23–31, Jun. 2020, Accessed: Sep. 18, 2023. [Online]. Available: http://ijasret.com/VolumeArticles/FullTextPDF/475_5.DESIGN_AND_STRUCT URAL_ANALYSIS_OF_BAJA_FRAME_WITH_CONVENTIONAL_AND_COMPOSITE _MATERIALS.pdf

- [45] Kumar, N., Chittoria, V., & Upadhyay, U. (2020). Spur Gear Designing and Weight Optimization -International Journal of Engineering Research and Technology
- [46] D. Colgrove, "Steering system for SAE baja," thesis, BYU Scholars Archive, Provo, 2019
- [47] "Baja SAE Frame Investigations," Portfolio and projects, Dec. 13, 2019. https://travisforhireblog.wordpress.com/2 019/12/12/baja-sae-frame-investigations/ (accessed Sep. 19, 2023).

[48] W. F. Milliken and D. L. Milliken, Race Car Vehicle Dynamics. Warrendale,, PA, 1995.

- [49]
- J. C. Dixon, Tires, Suspension and Handling, 2nd ed. Warrendale, PA: Society of Automotive Engineering, SAE, 1996.
- [50] "Suspension Types," Suspension design software susp types, http://www.susprog.com/susptype.htm (accessed Sep. 17, 2023).

- [51] J. Isaac-Lowry, "Suspension Design: Types of Suspensions," Automotive Articles, http://www.automotivearticles.com/Suspension_Desi gn_Types_of_Suspensions.shtml (accessed Sep. 17, 2023).
- [52] S. Wolfe, "PDF." Ohio state University, Spring. 2010
- [53] "[Front Impact Test & Meshing] BAJA SAE Roll Cage/Frame Design in ANSYS Workbench Static Structural," www.youtube.com. https://www.youtube.com/watch?v=CJ7S6/ncul &ab_channel=DeltaAcademy (accessed Science) 2023).

- [54] C. Kanna, Design, Analysis, and Simulation of a Four-Wheel-Drive Transmission for an All-Terrain Vehicle, 2022
- [55]
- Anjali Mukeshkumar Sah , Naved Anwar Husain Farooqui, Design and Analysis of Gearbox for SAE BAJA Competition, 2020
- [56] Neeraj Patel, Tarun Gupta, Methodology for Designing a Gearbox and its Analysis, Vol. 5 Issue 01, January-2016

- [57] Mrinal Gupta, Mayank Pant and AkshitKhandelwal, Design and Analysis of Gearbox withIntegrated CV Joints, Volume 8, Issue 8, August 2017
- [58] Z. E.-S. Moustafa El-Gindy, Road and Off-Road Vehicle Dynamics, Springer, 2023.
- [59] J. Vogel, "Tech Explained: Ackermann Steering Geometry," *Racecar Engineering*.

- [60] A. Goodarzi and A. Khajepour, Vehicle Suspension System Technology and Design. San Rafael, CA: Morgan & Claypool Publishers, 2017.
- [61] D. E. Kline, *Geometric Design of Independent Suspension Linkages*. David E Kline, 2018.
- [62] N. Malik and P. Agarwal, "Fine-Tuning Of the Suspension System of Baja ATV." Aug. 2017
- [63] A. Thosar, "Design, Analysis and Fabrication of Rear Suspension System for an All-Terrain Vehicle." Nov. 2014

- [64] M. Poojari, A. Raj, B. S. Babu, R. Muddaiah, and B. S. Shreyas, "Design, analysis of H-arm camber link rear suspension system along with design of custom coil springs for an electric all-terrain vehicle," *Materials Today: Proceedings*, vol. 46, pp. 2858–2867, 2021. doi:10.1016/j.matpr.2021.03.131
- [65] "Suspension geometry calculator," RACING ASPIRATIONS,
 - https://www.racingaspirations.com/apps/suspensio n-geometry-calculator/ (accessed Sep. 16, 2023).
- [66] "Spring Rate Calculator: Wheel rate calculator: Automotive," Hyperco, https://www.hypercoils.com/spring-ratecalculator (accessed Sep. 17, 2023).

- [67] J. Balkwill, Performance vehicle dynamics : engineering and applications. Oxford, England: Butterworth-Heinemann, 2018.
- [68] M. Blundell and D. Harty, The multibody systems approach to vehicle dynamics, 2nd ed. Oxford, England ;: Butterworth-Heinemann, 2015.
- [69] S. S. Sankar, "Suspension Design and testing of an All-Terrain Vehicle using Multi-body dynamics Approach," IOP conference series. Materials Science and Engineering, vol. 376, no. 1, p. 12094–, 2018, doi: 10.1088/1757-899X/376/1/012094.
- [70] A. Wang, J. Chen, and X. Shen, "Optimal Design of Suspension System of Four-wheel Drive Baja Racing," Journal of physics. Conference series, vol. 2235, no. 1, p. 12086–, 2022, doi: 10.1088/1742-6596/2235/1/012086.

- [71] M. Anthony Bala Paul Raj, R. Pala Raviramachandran, N.
 Prakash, B. Chirudeep Reddy, and V. Gopi Krishna, "Design and Optimization of Rear Wheel Assembly for All-Terrain Vehicle," International journal of vehicle structures and systems, vol. 13, no. 3, pp. 285–288, 2021, doi: 10.4273/ijvss.13.3.07.
- [72] "2.5 PODIUM-X AFTERMARKET SHOCK OWNER'S MANUAL FLOAT 3 EVOL RC2 FACTORY SERIES OWNER'S MANUAL." Accessed: Sep. 19, 2023. [Online]. https://www.ridefox.com/fox17/dl/atv/605-00-114_Rev_B.pdf
- [73] "Semi-Trailing Arm Suspension Geometry | Solidworks | SAE BAJA | ATV,"www.youtube.com. https://www.youtube.com/watch?v=Xuoic1KMWB0&list= PLWfMzLgRVSS8bc2TjSl0h-Mj1xyGP9civ&index=3 (accessed Sep. 19, 2023).

Bibliography

- [74] W. C. Michell, A. Staniforth, and I. Scott, "Analysis of Ackermann Steering Geometry," SAE International, 2006.
- [75] V. Bhardwaj, O. Chauhan, and R. Arora, "Design and Optimization of Steering Assembly for Baja ATV Vehicle," SAE Technical Paper 2023-01-0161, 2023.

[76]

[77] M. Guiggiani, *The Science of Vehicle Dynamics Handling*, *Braking, and Ride of Road and Race Cars*. Cham: Springer International Publishing, 2023. [78] Baja Virtual Presentation Series Day 8: - Steering Calculations Slide (Baja Virtuals 2020). Youtube, 2019.

- [79] A. Knowles, "Set Up Suspension 101," ATV Rider, <u>https://www.atvrider.com/set-suspension-101/</u> (accessed Sep. 19, 2023).
- [80] V. Waladkar, P. Vitthaldas, S. Karle, and N. Ingale, "Design, Analysis & Fabrication of the Powertrain System for All-Terrain Vehicle," International Journal of Engineering Research & Technology, https://www.ijert.org/designanalysis-fabrication-of-the-powertrain-system-for-allterrain-vehicle (accessed Sep. 19, 2023).

Bibliography

[81] "A Look at Belt, Chain and Gear Drive Technology," Power Transmission Engineering Magazine RSS, <u>https://www.powertransmission.com/blogs/4-editors-</u> <u>choice/post/105-a-look-at-belt-chain-and-gear-drive-</u> <u>technology#:~:text=Gear%20drives%20are%20mechanicall</u> <u>y%20strong,drives%20have%20high%20transmission%20ef</u> <u>ficiency</u> (Accessed Sep. 19, 2023).

[82] "Gear Design by AGMA Theory: Online Calculator," The Engineering Blog, <u>https://theengineeringblog.com/gear-</u> <u>design-by-agma-theory/</u> (Accessed Sep. 19, 2023).

[83] Z. Zeng, Y. Zhang, and D. Tang, "Lightweight Design of Gearbox Housing of Baja Racing Car Based on Topology Optimization," *Journal of Physics: Conference Series*, vol. 2235, no. 1, p. 012084, 2022. doi:10.1088/1742-6596/2235/1/012084 [84] "Chain and Sprocket Calculator: RPM and Chain Speeds," Chain and Sprocket Calculator | RPM and Chain Speeds, <u>https://www.blocklayer.com/chain-sprocket</u> (Accessed Sep. 19, 2023).

[85] 6 IJAEMS-JUL-2015-11-Design of a Drivetrain for Sae Baja Racing Off ..., https://ijaems.com/upload_images/issue_files/1452664 386-6%20IJAEMS-JUL-2015-11-Design%20of%20a%20Drivetrain%20for%20Sae%20Baja %20Racing%20Off-Road%20Vehicle.pdf (accessed Sep. 19, 2023).

[86] Author links open overlay panel Nilabh Srivastava a, a, b, and A. the last two decades, "A review on belt and chain continuously variable transmissions (CVT): Dynamics and control," Mechanism and Machine Theory, https://www.sciencedirect.com/science/article/pi i/S0094114X08001432

Bibliography

- [87] "Belt/Other Drives," Official Baja SAE Forums, http://forums.bajasae.net/forum/belt-otherdrives_topic168.html (accessed Sep. 19, 2023).
- [88] "Chains and Belts Play to Their Strengths," Power Transmission Engineering Magazine RSS, https://www.powertransmission.com/articles/808-chainsand-belts-play-to-theirstrengths#:~:text=Tooth%20belts%20simply%20do%20not, transmitted%20in%20smaller%20envelope%20dimensions. %E2%80%9D (accessed Sep. 19, 2023).
- [89] 2024 Baja SAE Rules,

https://www.bajasae.net/cdsweb/app/NewsItem.aspx?Ne wsItemID=fca69591-edf2-46fc-aac2-0b7ed04f88a9 (accessed Sep. 19, 2023).

