NAL

SAE Baja '24 Capstone Team

Presentation 2

Abraham Plis, Evan Kamp, Bryce Fennell Joey Barta, Lars Jensen, Seth Deluca Cooper Williams, Gabriel Rabanal, Antonio Sagaral Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger

| SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Front Team

Abraham Plis, Evan Kamp, Bryce Fennell

Project Description

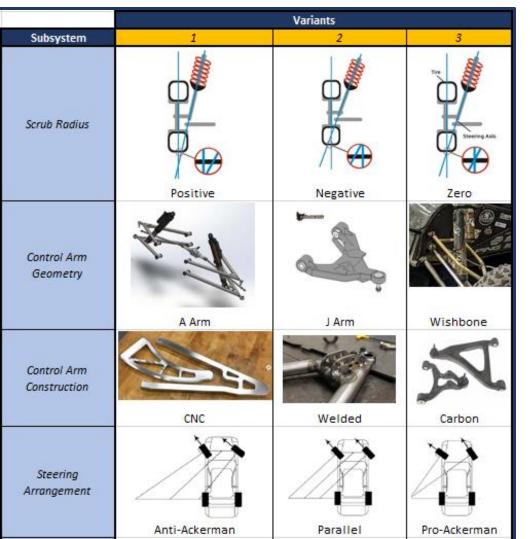
What is SAE Baja?

The Society of Automotive Engineers (SAE) Baja Collegiate Design Series is an engineering challenge for students to design and build a single-seat, all-terrain vehicle.

- Compete against other universities
- 13 members total, 4 sub-teams
 - Front End, Rear End, Frame, Drivetrain
- Sponsors: WLGORE, Monster Energy
- Successful performance puts NAU on the map, strengthens internal Baja knowledge, and grows NAU Baja industry sponsorship connections

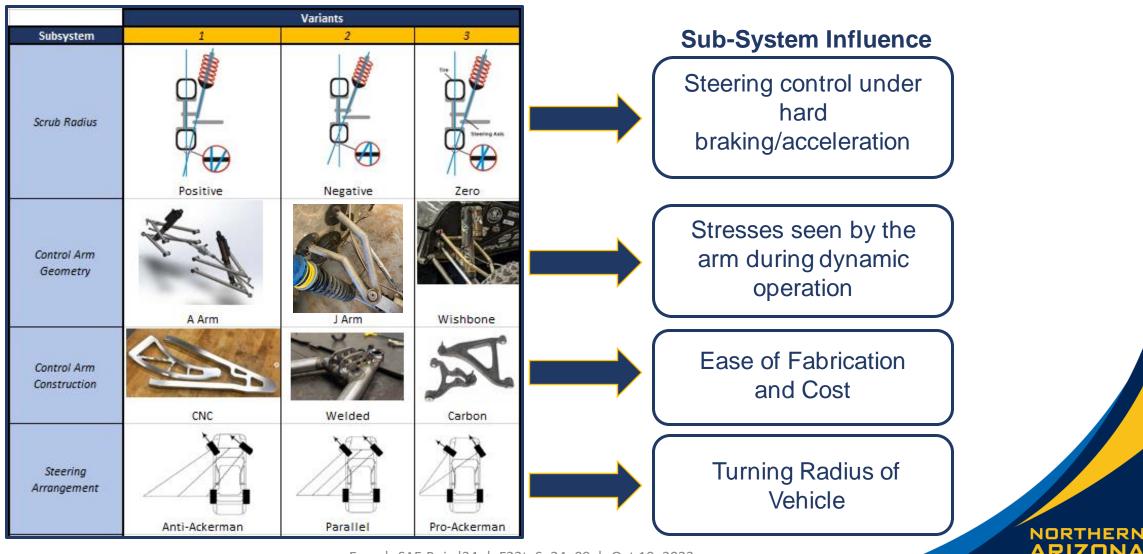
NAU SAE Baja 2020-2021


Black Box Model

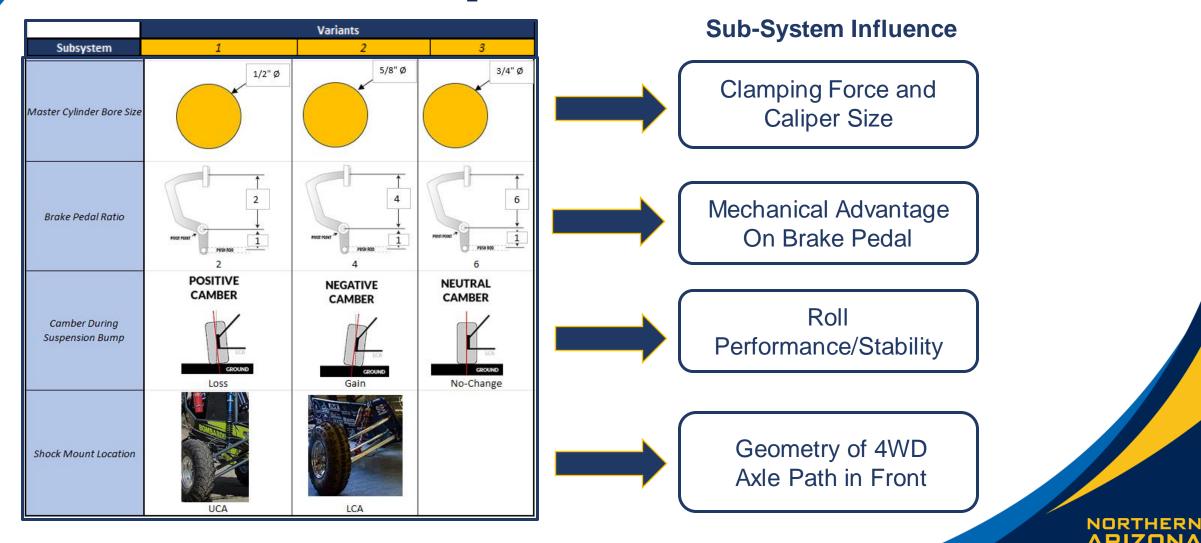


Evan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Functional Model



- Sub-systems were generated by researching the required attributes of a functioning SAE Baja vehicle
- Variants were generated based off prior literature reviews and calculations performed in Presentation 1



Abe | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Evan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

UNIVERSITY

JNIVERSITY

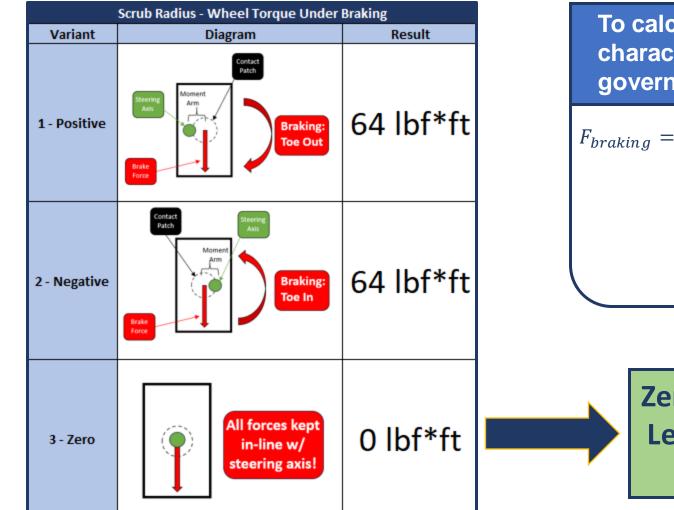
Engineering Calculations – Front 1

Equations, Tools, & Examples

Side	view swing	arm heig	ht given percentage anti dive Formula
Side View Swing Arm Height = Per	-	road/	rcentage front braking)*(1/Side View Swing Arm Length)/(Height of CG above Wheelbase of Vehicle)) /((%Braking _{front})*(1/svsa _{length})/(h/b))
 Percentage Anti Dive Front [%antidive_{front}] 	20	+10%	Equation/online platform used to
 Percentage front braking [%Braking_{front}] 	60	+10%	calculate anti-dive characteristics
(i) Side View Swing Arm Length [svsa _{length}]	37.2	+10%	based on a variety of predetermined
(i) Height of CG above road [h]	22	+10%	vehicle dimensions [90]
	Inch 62	+10%	
(j) Wheelbase of Vehicle [b]		~	
(i) Side view swing arm height given percentage anti dive [svsa _{height}]	4.4	Copy	

➤ Ge	eneral range of the v	/alues
Parameters	Front	Rear
Camber @Jounce 5"	-2deg – 3deg	0 - 4 deg
Caster	10-12 deg	0
КРІ	7-10 deg	0
Toe in and Toe out	0 – 2deg (in or out)	0 – 2deg (in or out)
Scrub radius	2 – 5in	0
Roll center height	11in – 15in	7in – 12in
C.G of vehicle	23 – 28 in	

Example of ideal spec ranges for SAE **Baja vehicles to** guide this year's suspension design [91]



ADAMS Suspension software provides a "free" alternative to Lotus Shark (should the need arise), application for comp. package [92]

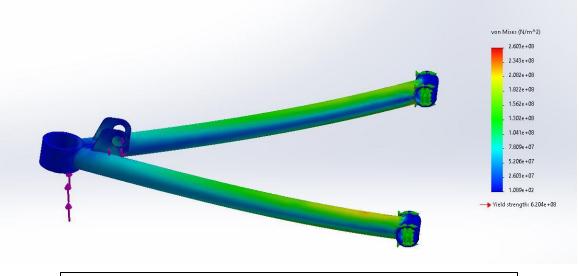
Abe | SAE Baja '24 | F23toSp24 09 | Oct 10, 2023

Engineering Calculations – Front 2 Scrub Radius

To calculate the influence of scrub radius on toe characteristics, we can use the following governing equations & assumptions:

 $F_{braking} = \frac{Weight \ of \ Car}{2} * (Coeff. Friction \ Tire \ to \ Asphalt)$ $T_{wheel} = F_{braking} * D_{MomentArm}$

Wight of Car = 550 lbs. (with driver) Coeff. = 0.7 (worst case) Moment Arm = 4 in.



Steering Axis

NORTHERN ARIZONA UNIVERSITY

Abe | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations – Front 3 Control Arm Geometry – A Arm Minimized Complication

Developed stress on front upper control arm

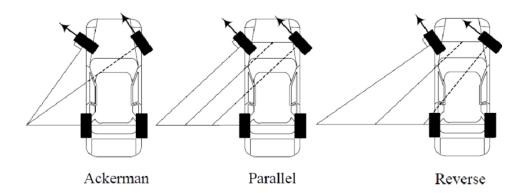
Assumptions: 550lb vehicle enduring full weight on a single w wheel falling from ~3 feet Importance: Of all geometries simulated, A-Arm has least complicated stress interaction

SolidWorks analysis of stresses on the **Upper Control Arm** during a maximum force event. Resulting FOS of 2.38 meaning the **Design Passes!**

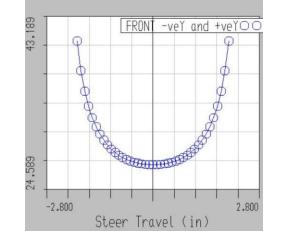
UEES (mm) 5.567 e-00 5.010 e-00 3.340 e-00 2.2733 e-00 2.2277 e-00 1.1712 e-00

Displacement on front upper control arm

Engineering Calculations – Front 4 Control Arm Construction


Type of Control Arm	Material Cost	Design Time	Manufacturing Time	Other Benefits
Welded	4'x4 control arms 1"OD with 1/16" ID Using 4130 Steel \$40x4 = \$160	1 hour CAD for both the upper and lower control arm. 10 minutes to mirror to passenger side TOTAL 2hr 10min	1 hour of jigging with 45 minutes of welding TOTAL 1hr 45min	Additional Adjustability with welded
CNC Aluminum	2'x1'x2" billet for each Control Arm \$600x4 = \$2400	4 hour CAD for both upper and lower control arm. 10 minutes to mirror to passenger side TOTAL 8hr 10min	2 hours of Programming 2 hours of Machining TOTAL 4hr	If done correctly could be Lightweight

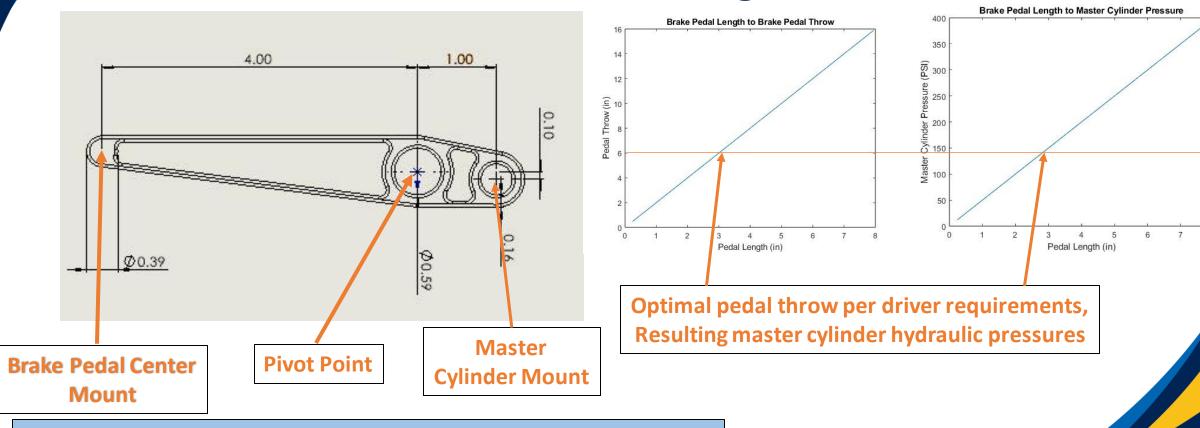
Evan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


Engineering Calculations – Front 5

Steering Arrangement

Preliminary Measurements Using Lotus Shark

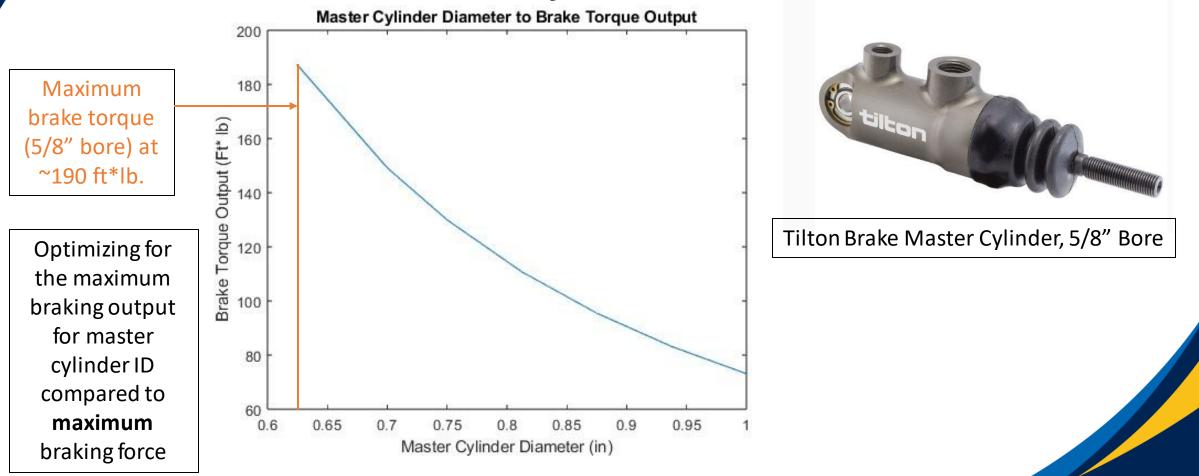
Inner wheel angle (δi)	50°
Outer wheel angle (δo)	28.4°
δavg	39.2°
Rear wheel to center of gravity (a2)	32



Results

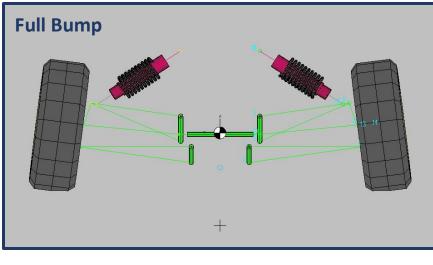
Percent Ackerman Used	43.189%
Projected Turning Radius (R)	6.93ft

Engineering Calculations – Front 6 Brake Pedal Length


A brake pedal throw to master cylinder throw ratio of 4:1 will provide **maximum** power transfer with **minimal** pedal motion

Bryce | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

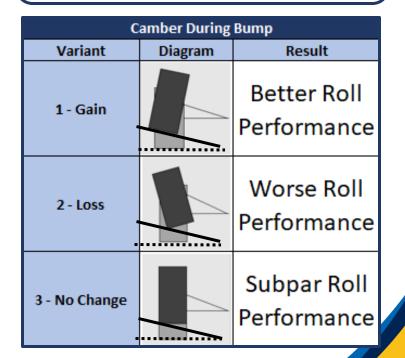
Engineering Calculations – Front 7

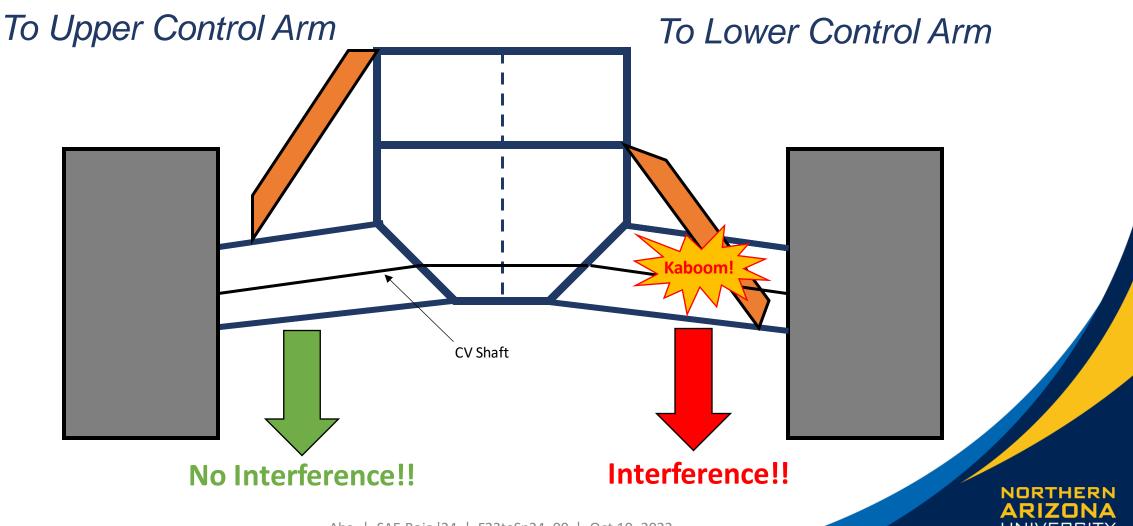

Master Cylinder Bore Size



NORTHERN

Engineering Calculations – Front 8


Camber During Suspension Bump


Full Roll

More **negative camber gained** during compression helps maintain tire contact and prevent wheels from tipping over during roll Camber gain refers to how much negative camber the wheels gain during compression (bump)

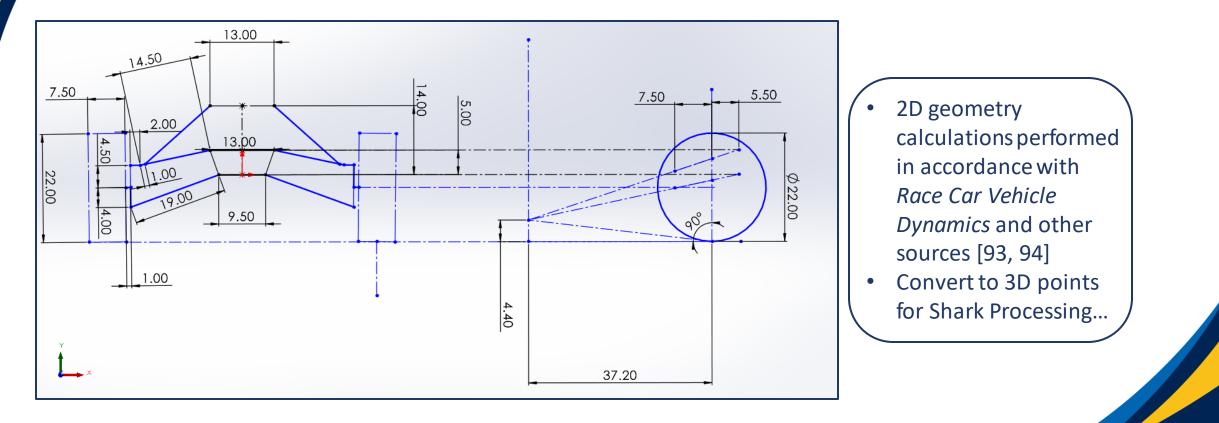
Engineering Calculations – Front 9 Shock Mount Location

Abe | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Concept Evaluation

			Variants			
Subsystem	1	Rating	2	Rating	3	Rating
Scrub Radius	Positive	Х	Negative	x	Zero	\checkmark
Control Arm Geometry	A Arm	\checkmark	J Arm	x	Wishbone	Х
Control Arm Construction	CNC	x	Welded	\checkmark	Carbon	Х
Steering Arrangement	Anti-Ackerman	Х	Parallel	Х	Ackerman	\checkmark
Master Cylinder Bore	1/2"	Х	5/8″	\checkmark	3/4"	Х
Brake Pedal Ratio	2	Х	4	~	6	Х
Camber During Suspension Bump	Loss	х	Gain	\checkmark	No-Change	Х
Shock Mount Location	UCA	✓	LCA	x		

NORTHERN ARIZONA


Final Design Discussion

			Variants			
Subsystem	1	Rating	2	Rating	3	Rating
Scrub Radius	Positive	Х	Negative	Х	Zero	✓
Control Arm Geometry	A Arm	√	J Arm	Х	Wishbone	Х
Control Arm Construction	CNC	Х	Welded	\checkmark	Carbon	Х
Steering Arrangement	Anti-Ackerman	Х	Parallel	x	Ackerman	✓
Master Cylinder Bore	1/2"	Х	5/8″	✓	3/4"	Х
Brake Pedal Ratio	2	Х	4	\checkmark	6	Х
Camber During Suspension Bump	Loss	Х	Gain	✓	No-Change	X
Shock Mount Location	UCA	✓	LCA	Х		

Evan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

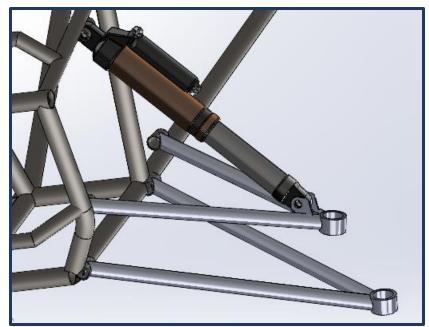
INIVERS

Initial Steering Geometry Calculations

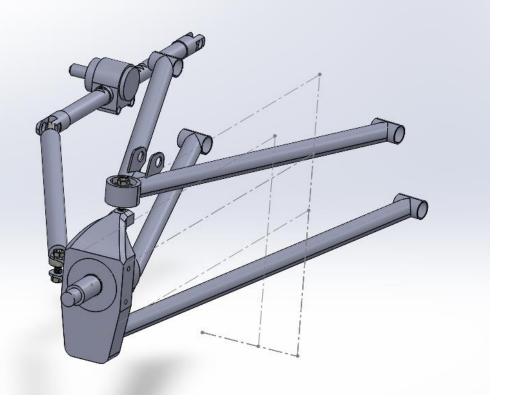
Initial Steering Geometry Calculations

[

			Solio	dWorks	
		Coordinate Description	X (Driver + Passenger -)	Y(Up + Down -)	Z(Towards Front + Towards Rear -)
		UCA Front Pivot	6.5	18.06	0
	Side	UCA Rear Pivot	6.5	13.9	-13
		LCA Front Pivot	4.75	13.06	0
	Drivers	LCA Rear Pivot	4.75	10.42	-13
	ā	UCA Ball Joint	20.77	15.51	-5.5
		LCA Ball Joint	22.77	7.01	-5.5
		UCA Shock Mount	19.77	15.54	-5.57
		Frame Shock Mount	6.54	26.77	-7.75
	a	UCA Front Pivot	-6.5	18.06	0
N	Side	UCA Rear Pivot	-6.5	13.9	-13
	e,	LCA Front Pivot	-4.75	13.06	0
	assenger	LCA Rear Pivot	-4.75	10.42	-13
	Pass	UCA Ball Joint	-20.77	15.51	-5.5
_ /	a	LCA Ball Joint	-22.77	7.01	-5.5
		UCA Shock Mount	-19.77	15.54	-5.57
		Frame Shock Mount	-6.54	26.77	-7.75


- 2D calculations transferred to 3D sketch
- Initial hardpoints tabulated for easier import into Shark
- Iteration, iteration, iteration...

Finalized Front End Geometry from *Shark*



Upper & Lower Control Arms w/ Shock On Frame

Bryce | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Isometric view of current SolidWorks model for SAE Baja '24 front end

Bryce | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Project Schedule

PROJECT: SAE	Baja 24																																	
NAU A.Y. 2023-2024					Legend:	F	ront		Re	ear		Drive	train		Frame		All	Team																
Project Manager: Abe I																																		
Project start date:	10/9/2023					Oct	ober														Nov	embe	r								_			
Scrolling increment:	1	< >				10	11 12 1	3 14	15 16	17 18	3 19 2	20 21	22 23	24 25	26 27	28 23	30 31	1 2	34	56		3 9 1	0 11 1	2 13 14	L 15 11	6 17 18	19 20	21 22	23 24	25 26	27 28	29 30	12	34
Milestone description	Responsible Sub-Team	Assigned To	Progress	Start	Days	т	/ т і	FS	s M	τw	/ т	FS	s M	т 🖤	TF	s s	мт	₩Т	FS	S N	1 T Y	V T F	s	S M T	₩Т	FS	S M	т∨	TF	s s	мт	₩Т	FS	S M
Measure Hailey & Design Rollcage	Frame	Cooper Lead	100%	9/18/2023	10																									p	>			
Concept Generation & Selection	All Team	Team Leads	100%	9/26/2023	11																													
Presentation 2	All Team	NłA	100%	10/3/2023	7																													
Packaging Integration (Wheelbase, car length, etc.)	All Team	Cooper & Henry Lead	90%	10/3/2023	15																													
Report 1& Vebiste 1	All Team	Seth	30%	10/20/2023	8									Ц																				
Finalize Frame (footbox, lower rear triangle, rollcage)	Frame	Cooper Lead	40%	10/11/2023	22																													
Subsystem Designs	Milestone			11/23/2023	1																								₽					
UCA, LCA, Knuckle, Rack, Brakes, Hubs	Front	Bryce Lead	25%	10/11/2023	15																													
Trailing Arm, Camber Links	Rear	Seth Lead	20%	10/11/2023	15	_																						_						
eCVT, Front/Rear Gear Box, Belt Power Transfer, Brakes	Drivetrain	Henry Lead	30%	10/11/2023	17																							_						
Rough Designs Fully in CAD	All Team	All Team	0%	10/11/2023												\square																	_	
Analysis Merno	All Team	All Team	0%	10/28/2023														++																
Pres 3 & 1st Demo	All Team	All Team	0%	10/31/2023																													_	_
Refined Designs in CAD	All Team	All Team	0%	11/1/2023	23			_			_																					+	_	_
Report 2	All Team	All Team	0%	11/13/2023																														
Completed & BOM	Milestone	All Team	0%	11/24/2023	8																													
Full Weld)	Frame All Team	Cooper Leads All Team	0%	11/1/2023																														
			0%	11/27/2023																														
Website 2	All Team	Seth	0%	12/2/2023	9																													

Abe | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

NORTHERN

UNIVERSITY

Project Schedule

Next Steps:

- o Front: UCA, LCA, Knuckle, and Steering in CAD
- Rear: Trailing Arm & Camber Links in CAD
- *Frame:* Finalize Frame by Halloween (Tabs & All Members)
- Drive: Front/Rear Gearboxes & 4WD Belt in CAD, continue work on eCVT

Deadline(s): Rough CAD by 10/31

```
Project Status: On-Track ✓
```


Bill of Materials – Front

Steering	Quantity	Costing	Total	Suspension	Quantity	Costing	Total
steering column	1	50	\$ 50.00	upper arm	2	33	\$ 66.00
steering rack	1	200	\$200.00	lower arm	2	27	\$ 54.00
bearing for steering column	2	20	\$ 40.00	ball joints	4	25	\$ 100.00
rod ends	4	15	\$ 60.00	delrin bushing	4	3	\$ 12.00
tie rods	2	45	\$ 90.00	shocks	2	Owned	\$ -
		Total:	\$440.00			Total:	\$ 232.00
Brake	Quantity	Costing	Total	Drive	Quantity	Costing	Total
caliper	2	180	\$180.00	cv axle	2	Owned	\$ -
master cylinder	1	280	\$280.00	cv bearing	2	15	\$ 30.00
rotor	2	40	\$ 80.00	knuckle	2	300	\$ 600.00
brake lines	10ft	150	\$150.00	hub	2	180	\$ 360.00
brake line fittings	From Kit (~10)	90	\$ 90.00	rim*	2	Owned	\$ -
brake pressure sensor	1	15	\$ 1.00	tire	2	Owned	\$ -
dot 5.1 fluid	32oz	20	\$ 20.00	stud	8	6	\$ 48.00
brake pads	4	Included	\$-	lugnut	2	12	\$ 24.00
brake pedal	1	110	\$110.00	cotter pin	2	2	\$ 4.00
		Total:	\$911.00			Total:	\$ 1,066.00
		Tota	l Cost Pe	r Unit: \$2649			

BOM for SAE Baja '24 Front Team

NORTHERN

UNIVERSITY

Bryce | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Front End Budget

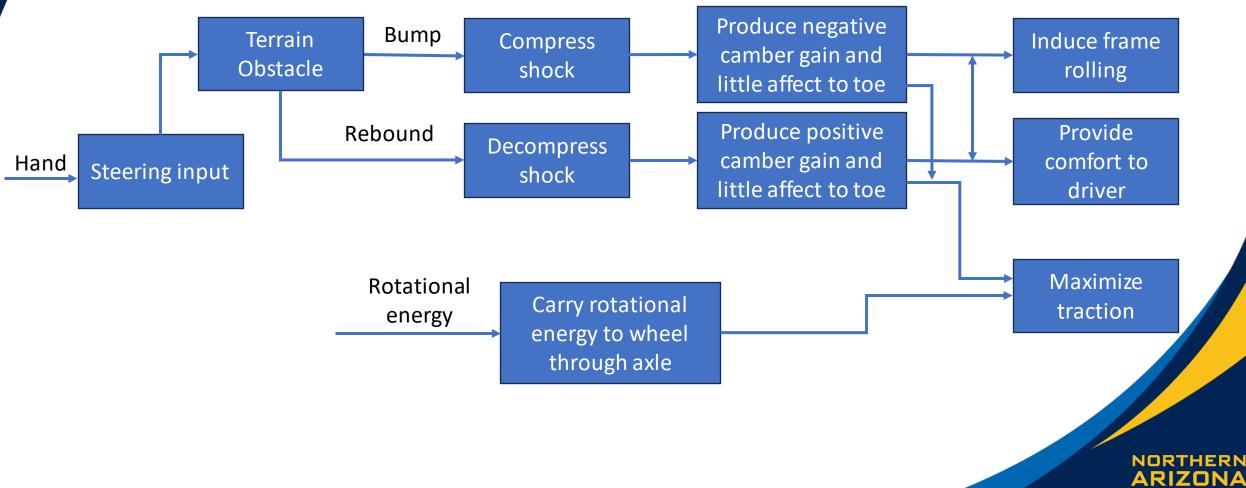
	Category	Relevant Items	Approximated Cost
1	Vehicle Expenses	Brake System Control Arm Materials Rod-ends/Ball Joints Shock Rebuild Knuckle Material/Manufacturing Estimated Total	\$1,000 \$120 \$50 \$126 \$1600 \$2649
2	Spare Parts	Rod-ends, Bushings, Welding supplies, Hardware	\$500
3	Competition Expenses Front Sub-team	Registration, travel (hotel rooms, vehicle rentals, gas, etc.)	\$1,125
4	Contingency (5%)	Unpredicted Expenses	\$400
		Total	\$4,674

HERN

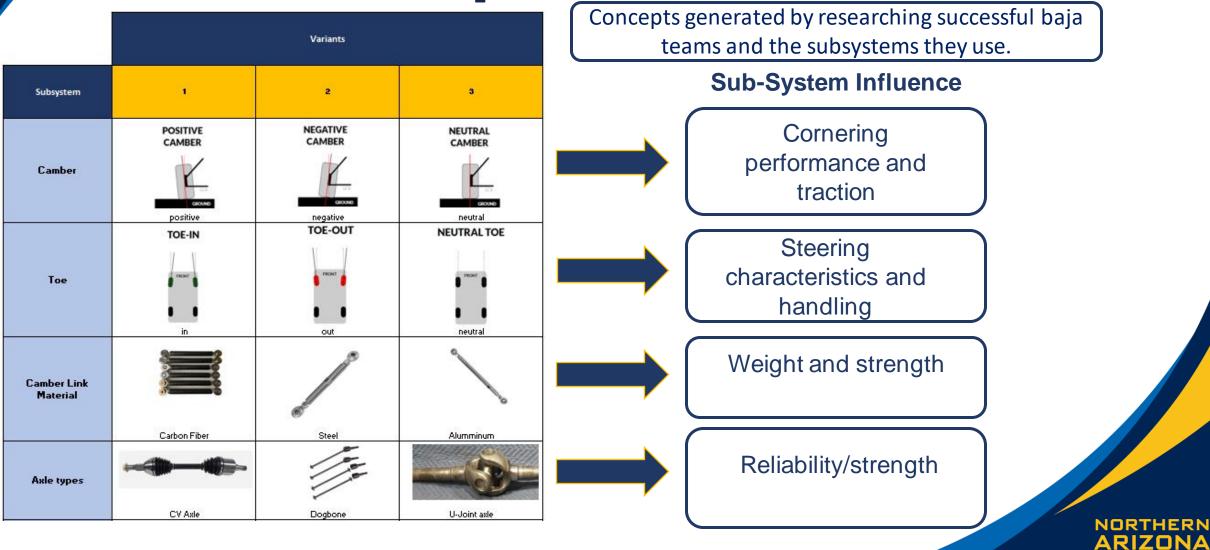
/ER

Rear Team

Seth DeLuca, Joey Barta, Lars Jensen



Black Box Model - Rear


NORTHERN

Functional Model

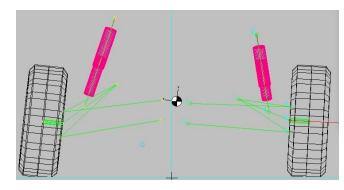
Seth | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

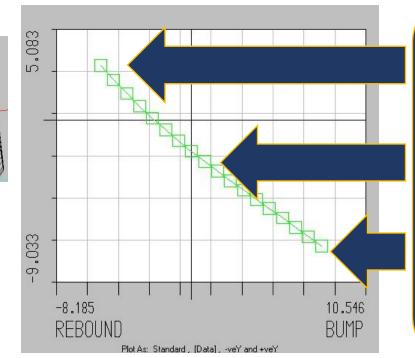
UNIVERSITY

JNIVERSITY

Joey | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

NORTHERN

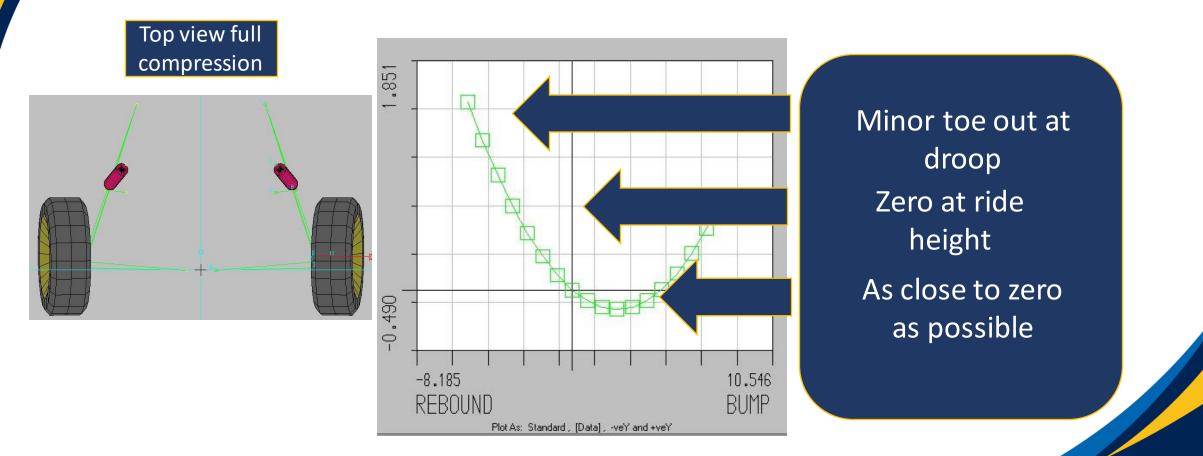

UNIVERSITY


Engineering Calculations – Rear 1

Camber

Full Compression

Full Roll


Positive camber at full droop

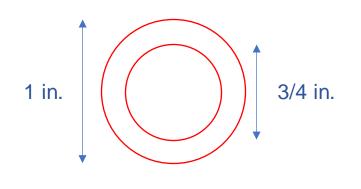
Negative camber at ride height

Negative camber gain

> NORTHERN ARIZONA UNIVERSITY

Engineering Calculations – Rear 2 Toe

Lars | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


Engineering Calculations – Rear 3

Camber link material

Length = 18in.

Aluminum Camber Link - tapered tube

Assumptions

- Uniform Cross-Section
- Analysis under load (compression)
- No affect from ball joints and screw connections

$$Q_{max} = \frac{2}{3}(r_o^3 - r_i^3) \quad \tau_{max} = \frac{4V}{3A}(\frac{r_o^2 + r_o r_i + r_i^2}{r_o^2 + r_i^2}) = \frac{4 \times 45 lbf}{3 \times 0.3436 in^2}(1.48 in^2) \gg 258.44 psi$$

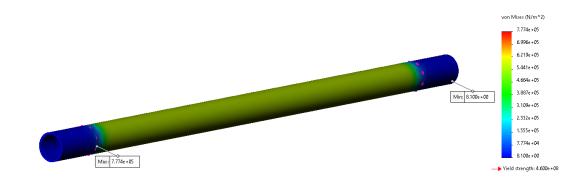
 $S_{Y} for \ 6063 - T6 \ Aluminum = 31,118 \ psi$

$$FoS = \frac{31,118}{258.44} = 120.4$$

NORTHERN ARIZONA UNIVERSITY

Joey | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations – Rear 3 Camber link material


Other Possible options:

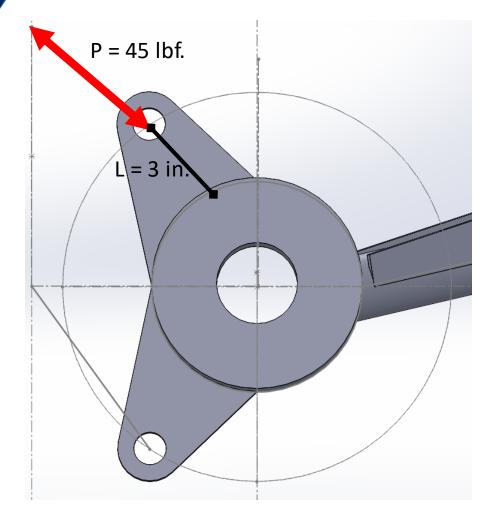
Carbon Fiber Camber Link – Hollow uniform crosssection tube with 7075 T6 machined aluminum insert

 S_{Ut} for Carbon Fiber = 650,000 psi

Note: Carbon Fiber has varying strength in different axis' making it difficult to analyze/compare

Steel Camber Link –uniform cross-section tube

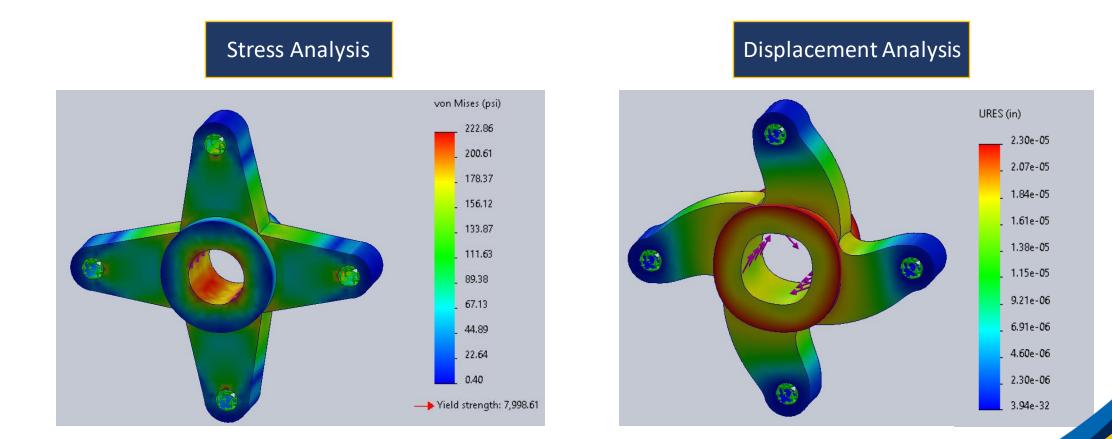
Joey | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


Engineering Calculations – Rear 4 Axle types [95]

Axle type	Pro	Con	CV – Axle	e max/mi	n length
Universal Joint (U- Joint)	-Easy to replace -Allows angle change	 -Acts as a suspension member -More stress on drivetrain's subsystems -Rougher ride -Spline- Very expensive to buy and can't manufacture at machine shop. 	Change in length	19.5 in 21 in Change in length of	Change in U-joint
Constant-Velocity axle (CV)	-Allows angle change -Changes length at different points in	-Hard to replace	needed for suspension geometry	CV Axle	(Non– spline)
	travel (plunges) -Cheaper		1.5 in	1-3 in	0 in

Seth | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations – Rear 5 Knuckle Design [97]


 $\sigma = Normal Stress, psi$ $\tau = Shear Stress, psi$ P = External Applied Load, lbf L = Linear Distance, in h = Size of Weld, inl = length of Weld, in

$$\sigma_b = \frac{6PL}{lh^2} = \mathbf{1}, \mathbf{270}.\,\mathbf{59}\,\mathbf{psi}$$

$$\tau = \frac{P}{lh} = \mathbf{35.29} \text{ psi}$$

NORTHERN ARIZONA UNIVERSITY

Engineering Calculations – Rear 6 Hub Design

Seth | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations – Rear 7

Hardware

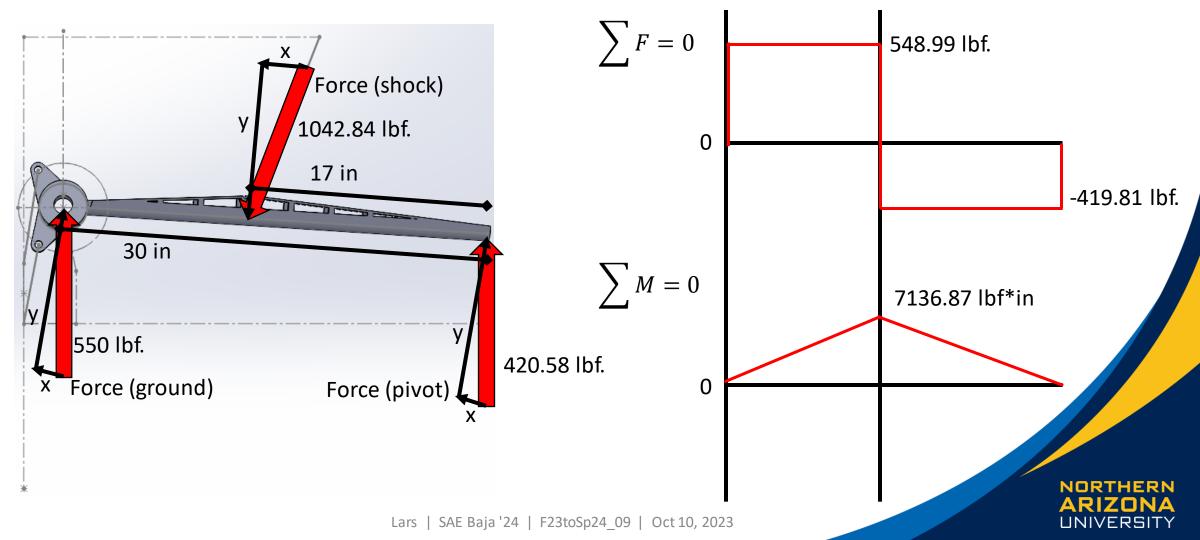
Black-Oxide Alloy Steel

- $S_{UT} = 90,000 \ psi$
- Tensile = 170,000 psi
- Mass density = 0.2782 lb/in^3
- Cheap!
- \$1.82 per screw
- Many size options

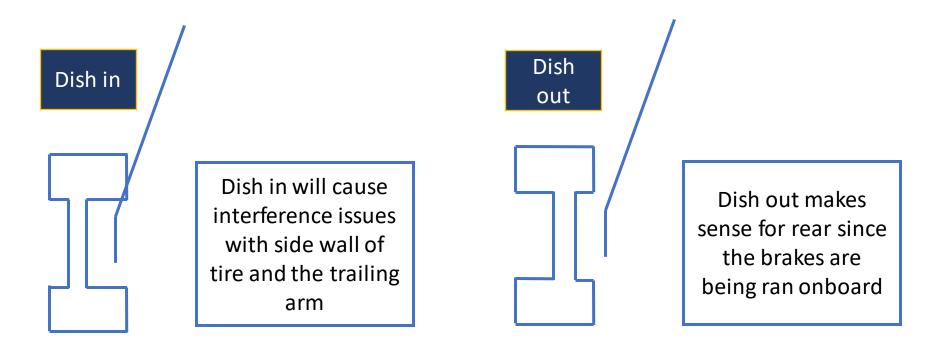
18-8 Stainless Steel

- $S_Y = 31,200 \, psi$
- $S_{UT} = 73,200 \, psi$
- $\rho = 0.2890 \ lb/in^3$
- \$7.58 per screw
- Corrosion Resistant

Grade 2 Titanium


- $S_Y = 39,900 59,500 \, psi$
- $S_{UT} = 49,900 psi$
- 40% Lighter than Carbon Steel
- $\rho = 0.1629 \ lb/in^3$
- Expensive!
- \$54.54 per screw

Joey | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


Engineering Calculations – Rear 8

Trailing Link Design

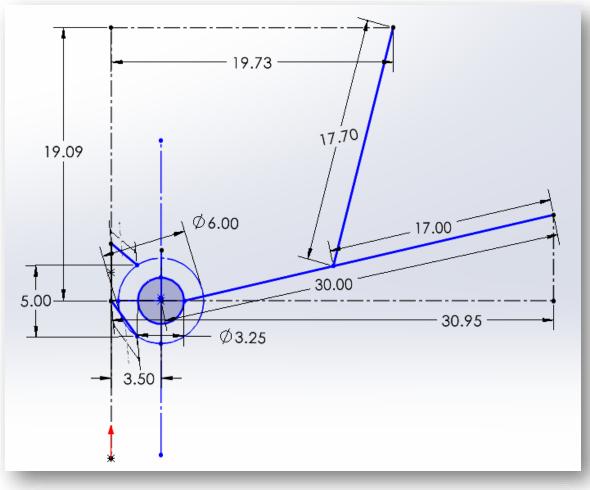
Engineering Calculations – Rear 9

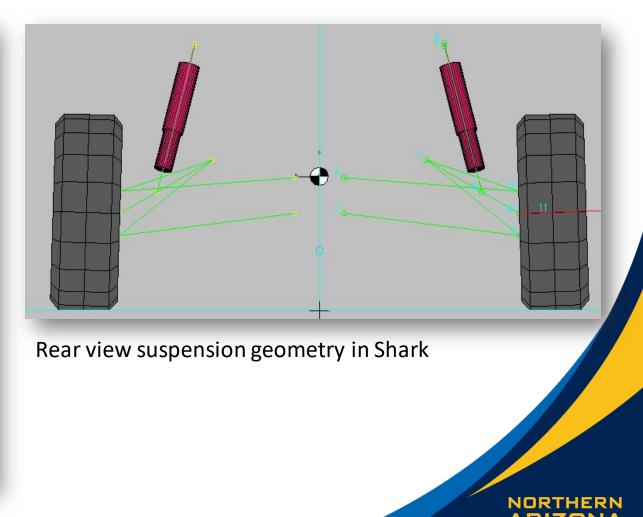
Wheel Dish Design

Seth | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Concept Evaluation

			Variants			
Subsystem	1	Results	2	Results	3	Results
Camber	Positive		Negative	<	Neutral	\checkmark
Тое	In	X	Out	×	Neutral	\checkmark
Camber Link Material	Carbon Fiber	X	Steel	\checkmark	Alumminum	\checkmark
Axle types	CV Axle	\checkmark	Dogbone	×	U-Joint axle	X
Knuckle Design	CNC Machined Aluminum	X	Steel	\checkmark	Attach knuckle to trailing arm	\checkmark
Hub	Aluminum (machined)	\checkmark	Cast	X	NA	
Hardware	Stainless Steel	X	Steel	\checkmark	Titanium	X
Trailing Link Design	Boxed Sheet Metal	\checkmark	Steel Tubing	\checkmark	CNC Machined Aluminum	X
Wheel dish	Dish out	\checkmark	Dish in	×	NA	


NORTHERN ARIZONA

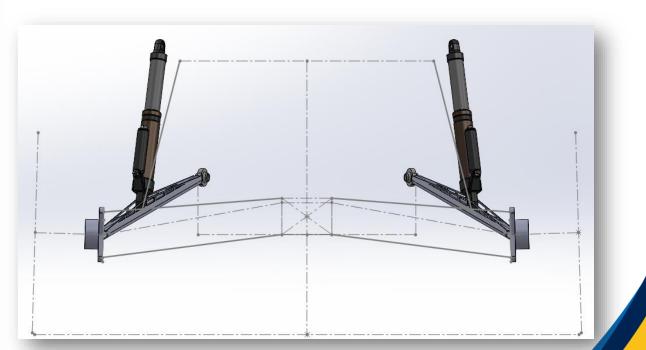

Concept Evaluation

	Variants								
Subsystem	1	Results	2	Results	3	Results			
Camber	Positive	\checkmark	Negative	\checkmark	Neutral	\checkmark			
Тое	In	X	Out	X	Neutral	\checkmark			
Camber Link Material	Carbon Fiber	×	Steel	\checkmark	Alumminum	\checkmark			
Axle types	CV Axle	\checkmark	Dogbone	X	U-Joint axle	X			
Knuckle Design	CNC Machined Aluminum	X	Steel	\checkmark	Attach knuckle to trailing arm	\checkmark			
Hub	Aluminum (machined)	\checkmark	Cast	X	NA				
Hardware	Stainless Steel	X	Steel	\checkmark	Titanium	×			
Trailing Link Design	Boxed Sheet Metal	\checkmark	Steel Tubing	\checkmark	CNC Machined Aluminum	X			
Wheel dish	Dish out	\checkmark	Dish in	×	NA				

NORTHERN ARIZONA

Final Design Discussion

INIVERSI


Right view wire frame dimensions

Lars | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Final Design Discussion

Rear view of trailing link assembly

Lars | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

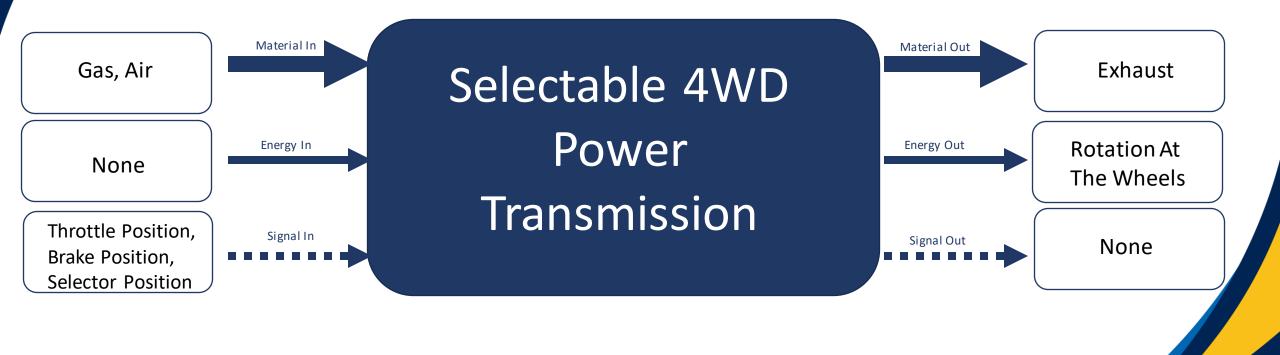
Bill of Materials – Rear

Suspension	Quantity	Cost	Drive	Quantity2	Cost2	Overall Total:
Trailing link	2	\$70.00	CV axles	2	\$110.00	
Camber link	4	\$50.00	Knuckles	2	\$120.00	
Shocks	2	\$0.00	CV bearings	2	\$0.00	
Rod ends	10	\$80.00	Hubs	2	\$400.00	
Pivot hardware	28	\$50.00	Wheels	2	\$0.00	
Frame mounts	8	\$30.00	Tires	2	\$0.00	
PVC	1	\$10.00	Wheel nuts	8	\$20.00	
Spares	4	\$120.00	CV hardware	2	\$0.00	
			Spares	3	\$200.00	
					,	
Total:	59	\$410.00	Total:	25	\$850.00	\$1,260.00

Seth | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

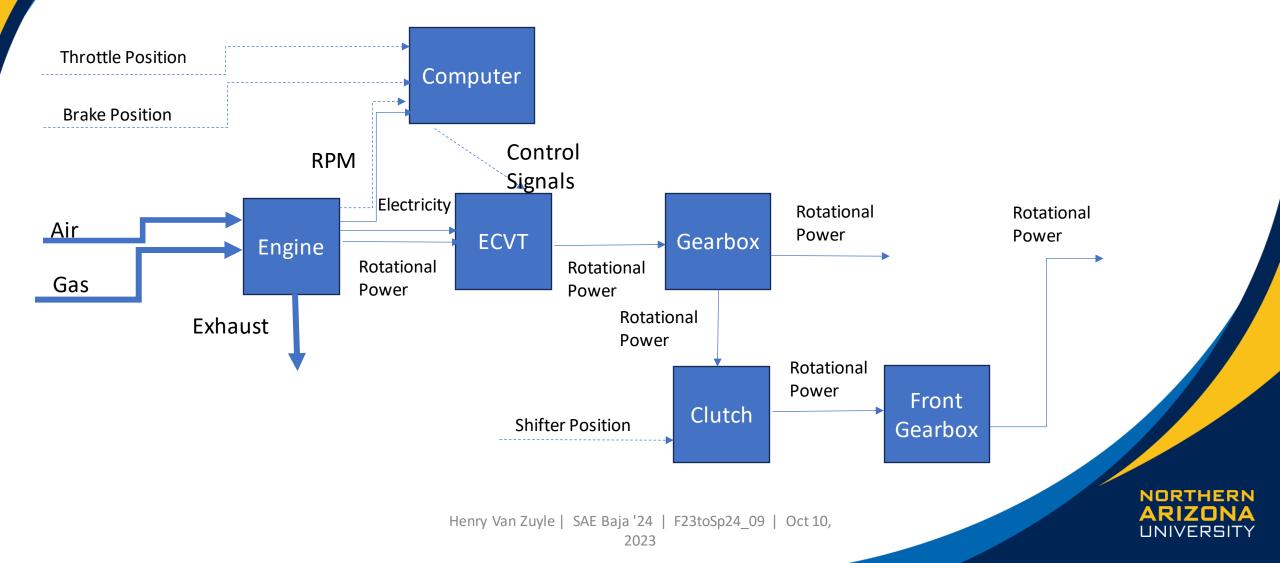
Rear End Budget

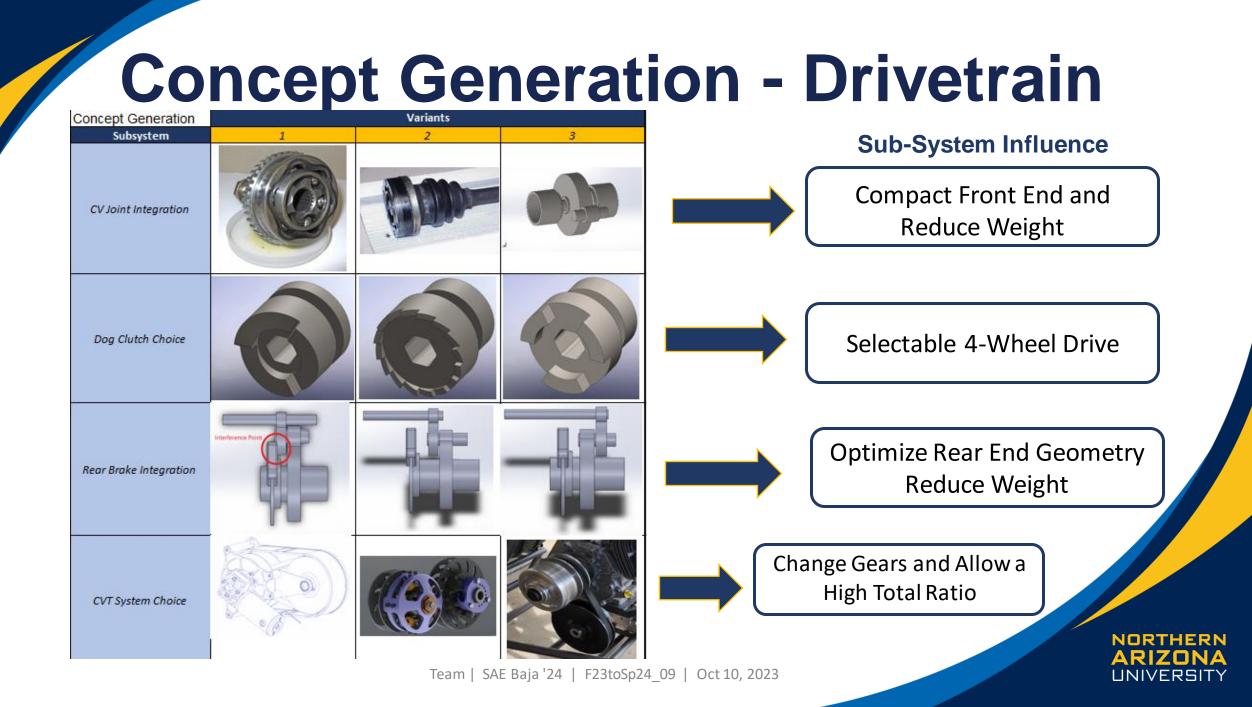
	Category	Relevant Items	Approximated Cost
1	Vehicle Expenses	Suspension System Drive System	\$410 \$850
		Estimated Total	\$1,260
2	Spare Parts	Camber links, rod ends, cv axles, hubs	\$320
3	Competition Expenses Rear Sub-team	Registration, travel (hotel rooms, vehicle rentals, gas, etc.)	\$1,125
4	Contingency (5%)	Unpredicted Expenses	\$135
		Total	\$2,840



Drivetrain Team

Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger


Black Box Model - Drivetrain



NORTHERN

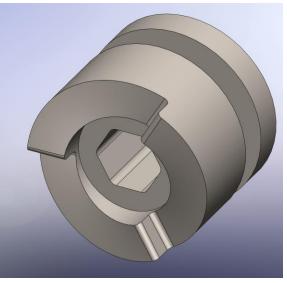
Functional Model - Drivetrain

Engineering Calculations – Drivetrain 1 Equations, Tools, & Examples

Equations:

- $\Delta r = r_o r_i$, $\Delta d = 2 \times \Delta r$
- $F = \frac{T}{r_i/12} = 1742.0$ lbs
- $\sigma = \frac{F}{A} = 11,531 \frac{lb}{in^2}$
- $n = \frac{\pi S \Delta d^2}{E^{4F}} = 28.84$
- $a = \frac{F}{m} = 553.35 \frac{ft}{s^2}$

Where:

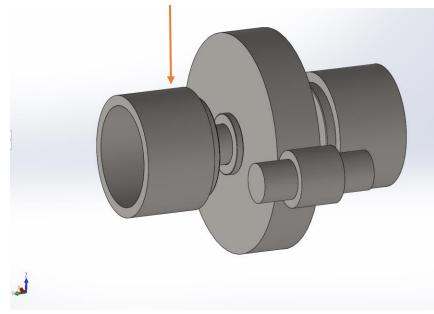

- T = Torque
- F = Force
- σ = Normal Stress on Teeth
- A = Planar Surface Area on Teeth
- a = Acceleration
- r = Radius, d = Diameter
- m = mass
- S = Material Strength
- n = Factor of Safety

Analysis Tool: MATLAB

clc; clear; close all; % All units are IPS % Material: 4130 Steel Annealed at 865C (Non Heat Treated) %Knowns %{ Torque, Material Strength, Outer Radius, Inner Radius, Tooth Surface Area, Mass T=126.66; S=81221.13; r_o=1.5; r_i=0.872516; A=0.151073; m=3.148067; %Calculations % Radius Difference dr=r o-r i; % inches % Force F=T/(r i/12); %pounds % Normal Stress on teeth on contact sigma_t=F/A; %psi % Factor of Safety n=((pi*S*(2*dr^2))/(4*F)); %unitless % Engage Acceleration a=F/m; %ft/sec^2

Spiral Jaw Dog Clutch

- Forces
- Tooth Normal Stress
- Factor of Safety
- Acceleration


Modeling Material: 4130 Steel Annealed at 865C

NORTHERN

Engineering Calculations – Drivetrain 2 CV Joint Integration

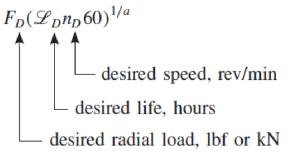
Radial Load

Analysis

H = 11.45; % Horsepower (HP) N = 3600; % Desired speed (rev/min) G1 = 17; % Number of teeth G2 = 65; % Number of teeth D = 12; % Diametral Pitch (teeth/in) p = 20; % Pressure Angle DP1 = G1/D; % Diametral Pitch for Gear 1 DP2 = G2/D; % Diametral Pitch for Gear 2 Ti = (550*H*60)/(N*2*pi)*12; % Input Torque (lb*in)

Rx = Ti/(DP2/2); % Reaction force in x direction Ry = Rx*tan(p); % Reaction force in y direction R = sqrt(Rx^2+Ry^2); % Resultant Bearing Reaction Force disp(R) % Displays Bearing Reaction Force

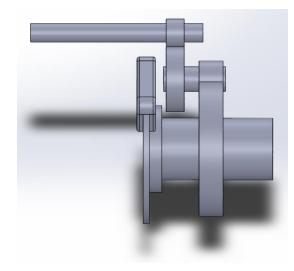
Fr = 39.3822; % Bearing Reaction Force a = 1/3; % Bearing load life LD = 1000; % Desired design life (hours) LR = 10^6; % Rating life (hours)


L = LD*N*60; % Desing life C = Fr(L/(LR)^a); % Catalog Load Rating Equation disp(C) % Displays Catalog Load Rating

Results

Sprag nominal torque = **75lbf** Bearing reaction force = **39.7lb** Catalogload rating = **8506.56lbf** or **37.8kN**

Jarett | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


Equations

 $C_{10} = F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathscr{L}_D n_D 60}{\mathscr{L}_R n_R 60}\right)^{1/a}$

Engineering Calculations – Drivetrain 3 Equations, Tools, & Examples

Option 2 : Optimal Gearbox Geometry

d_gearbox = gear5_pitch_diameter ; % Depth of gearbox casing at point of interest (in)

t_gearbox = 0.125 ; % Thickness of gearbox casing

L_reduction = (0.5*gear4_pitch_diameter + gear5_pitch_diameter) - (0.5*gear3 pitch_diameter) ; % Length of casing material reduction (in)

w_reduction = gear_width_23 + 0.1 ; % Width of casing material reduction (in) V_reduction =

(2*(L_reduction*w_reduction*t_gearbox))+(w_reduction*d_gearbox*t_gearbox) ; %
Volume of reduced material (in^3)

density_Al = 0.0975 ; % Density of 6061 T6 Aluminum (lb/in^3)

Weight_reduction_lbs = V_reduction*density_A1 % Weight of gearbox casing removed (lbs)

density_St = 0.284 ; % Density of 4140 Steel (lb/in^3)

Weight_shaftA_increase_lbs = (1.0667*((pi/4)*0.75^2))*density_St % Weight of Shaft A material increase (lbs)

Weight_Frontshaft_increase_lbs = (1.0667*((pi/4)*1^2))*density_St % Weight of
Front Shaft material increase (lbs)

net_Weight_reduction_lbs = Weight_reduction_lbs - Weight_shaftA_increase_lbs -Weight_Frontshaft_increase_lbs % Net weight reduction of Option 3 compared to Option 2.

Weight_reduction_lbs =

0.1512

Weight_shaftA_increase_lbs =

0.1338

Weight_Frontshaft_increase_lbs =

0.2379

net_Weight_reduction_lbs =

-0.2205

MATLAB Script for Calculations

Results of Calculations:

Net Weight Reduction of Option 3 = -0.2205 lbs This means that Option 3 (flipping stage 1 to passenger side of vehicle) results in a weight GAIN of 0.2205 pounds. Option 2 eliminates the brake caliper interference from Option 1 and weighs less than Option 3 with less design alterations than Option 3.

Equations:

 $Weight = V_{component} * \rho_{material}$

Where... $V = Volume (in^3)$

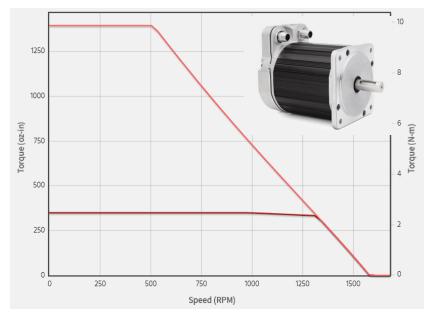
 $\rho = density\left(\frac{lb}{in^3}\right)$

NORTH

 $\rho_{steel,4140} = 0.285 \ \frac{lb}{in^3}$

 $\rho_{aluminium,6061\,T6} = 0.0975 \, \frac{lb}{in^3}$

Engineering Calculations – Drivetrain 4 ECVT Motor Specs


$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right)$$

- Force = 429.7 Lbf
- ¹/₂-10 lead screw
- Coef. Friction = .2

Max torque required from motor is 448 oz in

These equations calculate what torque output the ECVT Control motor needs to generate.

Hudson M-3432F-LS-08D

- P=IV
- I = 12A
- V = 48V
- Max motor power is 576 watts

Henry Van Zuyle | SAE Baja '24 | F23toSp24_09 | Oct 10,

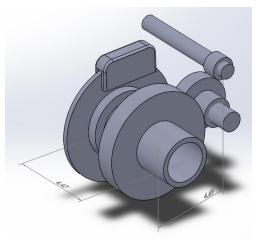
Concept Evaluation - Drivetrain

Concept Evaluation			Variants			
Subsystem	1	Rating	2	Rating	3	Rating
CV Joint Integration		X		×		~
Dog Clutch Choice	0	\checkmark	6	×		×
Rear Brake Integration		X		\checkmark		X
CVT System Choice		\checkmark		×		X

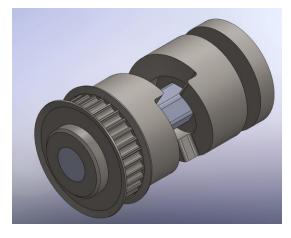
Team | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

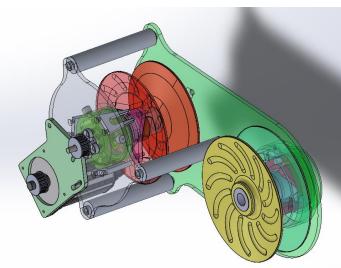
NORTHERN ARIZONA UNIVERSITY

Final Design Discussion -Drivetrain


Concept Evaluation	Variants						
Subsystem	1	Rating	2	Rating	3	Rating	
CV Joint Integration		X		X		~	
Dog Clutch Choice	0	\checkmark		X		X	
Rear Brake Integration	Interference Point	X		\checkmark		X	
CVT System Choice		\checkmark		×		X	

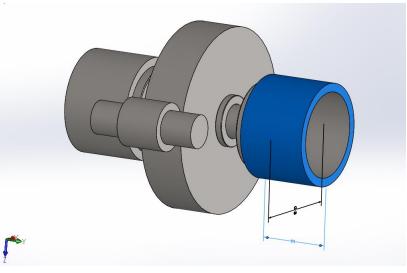
Ryan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023


NORTHERN


IINIVFRS

Final Design Visualization -Drivetrain

Rear Gearbox CAD, Approximate Dimensions Are: 6"x8"x4.5"



ECVT Cad, Yellow Sheave is Ø7.411"

Donovan | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Front Gearbox CAD, CV Cup Width is 2"

Bill of Materials – Drivetrain

Clutch System				ECVT				ECVT				Summary	
Part	Quantity	Cost (\$)	Total \$	Part	Quantity	Cost \$	Total \$	Part	Quantity	Cost \$	Total \$	Sub-System	Total (\$)
Driven Side Clutch	1	59.00	59.00	ECVT Primary Shaft	1	25.00	25	ECVT Secondary Moving Sheave	1	75	75.00	Clutch System	1336.57
Driving Side Clutch	1	59.00	59.00	Ecvt Primary Fixed Sheave	1	70.00	70	ECVT Secondary Cam	1	50	50.00	ECVT	3210.00
Shift Fork	1	21.49	21.49	ECVT Primary Mobile Sheave	1	70.00	70	ECVT Secondary Cam Nut	1	15	15.00	Front Gearbox	794.00
High Strength HTD Timing Belt	2	99.00	198.00	ECVT Primary Square Bushing	1	25.00	25	ECVT Backplate	1	60	60.00	Rear Gearbox	1018.55
3in Belt Pulley	1	5.35	5.35	ECVT Primary Sliding Shaft	1	40.00	40	ECVT Main Mounting Plate	1	30	30.00		
4.5in Belt Pulley	1	10.92	10.92	ECVT Primary Lead Screw Flange	1	50.00	50	ECVT Main Mount Standoff	3	20	60.00	Total	6359.12
Idler Pulleys	11	52.25	574.75	ECVT Primary Lead Screw nut	1	75.00	75	ECVT Lead Screw Bearing Mount	1	4	4.00		
Housing	1	25.43	25.43	ECVT Primary Lead SCrew	1	25.00	25	ECVT Motor Mount PLate	1	15	15.00		
Shifter	1	32.99	32.99	ECVT Primary Mobile Sheave Bushing	1	10.00	10	ECVT Controll Pulley	2	5	10.00		
Linkage Cables	1	78.74	78.74	ECVT Secondary Shaft	1	50.00	50	ECVT Lead Screw Nut Flange Fork	3	2	6.00		
Cable Tabs	10	27.09	270.90	ECVT secondary Fixed Sheave	1	75.00	75	Engine	1	900	900.00		
Front Gearbox				Rear Gearbox				ECVT					
Part	Quantity	Cost (\$)	Total \$	Part	Quantity	Cost \$	Total \$	Part	Quantity	Cost \$	Total \$		
Bearings, SKF 210-ZNR	4	80	320	Bearings, SKF 210-ZNR	2	80	160	Control Motor	1	500.00	500		
Sprag, GMN FK6205-2RS	2	80	160	Bearings, 6206	2	35	70	Control Motor Cables	2	90.00	180		
Circlips	2	2	4	Bearings, 6208	1	80	80	Arduino	1	70.00	70		
Gear 1	1	30	30	Bearings, 6212	1	175	175	Motor Controller	1	220.00	220		
Gear 2	1	50	50	Gears 2-4	1	74.56	74.56	Boost converter	1	60.00	60		
Housing	2	75	150	Gear 5	1	290	290	Buck Converters	2	10.00	20		
Shaft	2	30	60	Gearbox Casing (6061 Aluminum)	1	108.99	108.99	Sensors	1	50.00	50		
Hardware	1	20	20	Shaft (4140 Steel)	2	30	60	Hardware	1	20.00	20		
								Bearings	1	170.00	170		
								Belts	2	90.00	180		

Drivetrain Budget

	Category	Relevant Items	Approximated Cost
1	Vehicle Expenses	Motor Front Gearbox Rear Gearbox ECVT 4WD	\$900 \$794 \$1018.55 \$2310 \$1336.57
		Estimated Total	\$6359.12
2	Spare Parts	Hardware, Gears, CV axles	\$500
3	Competition Expenses Drivetrain Sub-team	Registration, travel (hotel rooms, vehicle rentals, gas, etc.)	\$1,125
4	Contingency (5%)	Unpredicted Expenses	\$300
		Total	\$8284.12

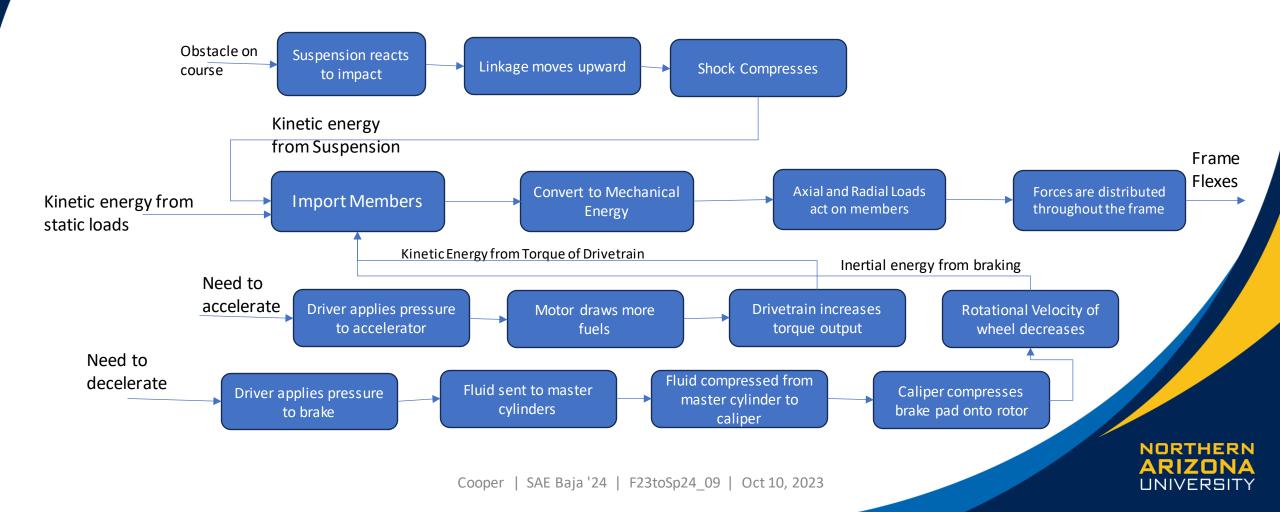
IERN

AR.

UNIVERSITY

Frame Team

Cooper Williams, Gabriel Rabanal, Antonio Sagaral



Black Box Model

NORTHERN

Functional Model

Concept Generation

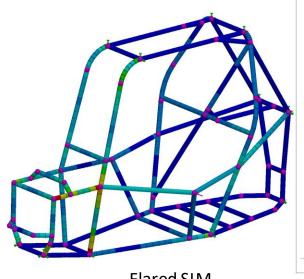
Subsystem	Variant 1	Variant 2
Frame Type		
Fuel Tank Mounting		
Seat Design	9	P
Side Impact Member		
Tube Material	AISI 4130	AISI 1018

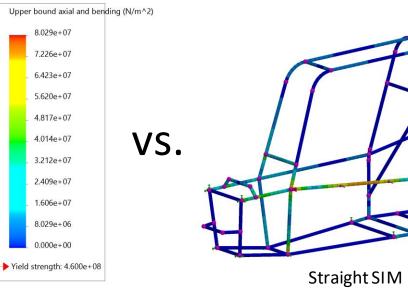
Gabe | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations – SIM

Equations, Tools, & Examples

Governing Equations:


		Varian	ts
Flared SIM's	Engineering Recs	Flared SIM	Straight SIM
Fewer members in parallel	Maximum Width (in)	32	28
Overall vehicle length shortened	Total Primary Tubing (ft)	45	48
Lower Egress time	Total Secondary Tubing (ft)	45	49
	Overall Vehicle Length (in)	67	75


 $I = \frac{\pi}{4} \left(R^4 - R_i^4 \right)$

 $P = \frac{F}{A}$

NORTHERN

JNIVERSITY

6.340e+07
5.706e+07
5.072e+07
4.438e+07
3.804e+07
3.170e+07
2.536e+07
1.902e+07
1.268e+07
6.340e+06
0.000e+00
Yield strength: 4.600e+08

Upper bound axial and bending (N/m^2)

Flared SIM

Cooper | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Engineering Calculations

Equations, Tools, & Examples

	Varian	ts
Engineering Recs	Rectangular Tubing	C-Brackets
Figure		
Material Volume		
(in^3)	6.9492	6.289
Weight (lb)	1.97357	1.78608
# of Weld Jigs	2-3	1-2
Types of alternative		
materials	1	0

Volume = $(\pi r_0^2 - \pi r_i^2) * L$ *Rectangular tubing substituted for circular tubing for simplicity*

Rectangular tubing substituted for circular tubing for simplicity *C-Bracket volume calculated using Solidworks tools*

Weight = $\frac{\rho}{v}$

Engineering Calculations – Lower Seat Mount

Equations, Tools, & Examples

Variant 1

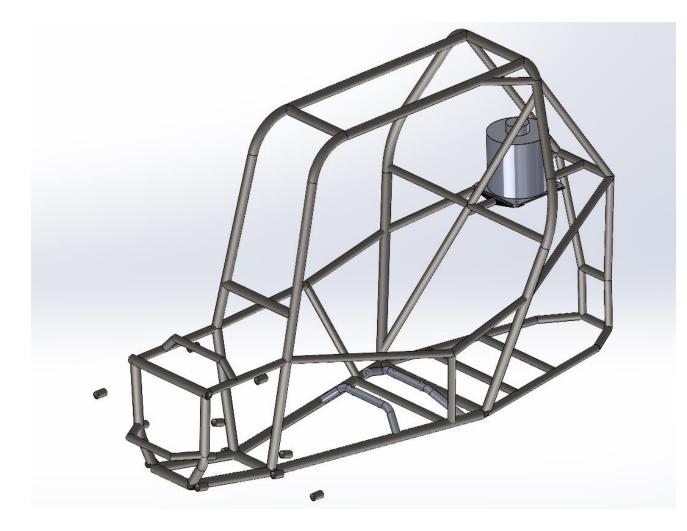
Variant 2

	Variant 1	Variant 2
Total Material volume (in³)	4.27	4.35
Ease of manufacturing	+	-

Antonio | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Concept Evaluation

	Variants											
Subsystem	1	Rating	2	Rating								
Frame Type	Front Brace	Х	Rear Brace	\checkmark								
Fuel Tank Mount	Square Brackets	Х	C-Brackets	\checkmark								
Seat Design	Slotts	\checkmark	Tabs	X								
Side Impact Members	Straight	Х	Flared	\checkmark								
Tube Material	AISI 4130	\checkmark	AISI 1018	x								


Final Design Discussion

		Variar	nts	
Subsystem	1	Rating	2	Rating
Frame Type	Front Brace	Х	Rear Brace	\checkmark
Fuel Tank Mount	Square Brackets	Х	C-Brackets	\checkmark
Seat Design	Slots	~	Tabs	Х
Side Impact Members	Straight	Х	Flared	\checkmark
Tube Material	AISI 4130	✓	AISI 1018	Х

Antonio | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Final Design Visualization

NORTHERN ARIZONA UNIVERSITY

Antonio | SAE Baja '24 | F23toSp24_09 | Oct 10, 2023

Project Schedule

ackaging Integration (Wheelbase, car length, etc.)	All Team	Cooper & Henry Lead	90%	10/3/2023	15														
Report 1 & Webiste 1	All Team	Seth	30%	10/20/2023	8														
nalize Frame (footbox, lower rear triangle, rollcage)	Frame	Cooper Lead	40%	10/11/2023	22										C.,	ame			
Subsystem Designs	Milestone			11/23/2023	1							P			F 1	ame			
JCA, LCA, Knuckle, Rack, Brakes, Hubs	Front	Bryce Lead	25%	10/11/2023	15										Ρι	urchase	5		
Trailing Arm, Camber Links	Rear	Seth Lead	20%	10/11/2023	15										Ν./	laterial		10/1	3/2023
CVT, Front/Rear Gear Box, Belt Power Transfer, Brakes	Drivetrain	Henry Lead	30%	10/11/2023	17											ateria		10/1	.5/2023
Rough Designs Fully in CAD	All Team	All Team	0%	10/11/2023	22										Сс	omplet	e		
Analysis Memo	All Team	All Team	0%	10/28/2023	7										In	tegrati	on	10/2	7/2023
Pres 3 & 1st Demo	All Team	All Team	0%	10/31/2023	8											0			1
Refined Designs in CAD	All Team	All Team	0%	11/1/2023	23										Pr	rototyp)e	11/1	.0/2023
Report 2	All Team	All Team	0%	11/13/2023	11											0.007			.0,2020
ull CAD Assembly Completed & BOM	Milestone	All Team	0%	11/24/2023	8							Pa Pa P	a na na na	pa pa					
rame Construction (Tac then Full Weld)	Frame	Cooper Leads	0%	11/1/2023	34														
2nd Demo	All Team	All Team	0%	11/27/2023	9														

NORTHERN

UNIVERSITY

Bill of Materials

SAE Baja Frame								
Part	Description	Qty	Units	Unit Cost	Cost	Obtained		
Primary Members	4130 1.25x.065" tubing	45	ft	7.00	315.00	N		
Secondary Members	4130 1x.035"tubing	45	ft	6.00	270.00	N		
Tabs	4130 0.1"sheet	100	in^2	0.28	27.78	N		
Side Panneling	Carbon Weave	20	ft^2	6.00	120.00	N		
Seat	Carbon Weave	4	ft^2	6.00	24.00	N		
Ероху	Carbon resin epoxy	1	gallon	85.00	85.00	N		
Harness	Standardized	1	unit	100.00	100.00	Y		
Submarine Straps	Standardized	2	unit	23.00	46.00	N		
Fire Extinguisher	5BC Standard	1	unit	25.00	25.00	Y		
Extinguisher Mount Bracket	Drake FIREX-MNT-DAG	1	unit	75.00	75.00	Y		
Fuel Tank Mounting Washers	McMaster Carr 94733A723	8	50	14.00	2.24	Y		
Mounting Hardware	Misc. nuts, bolts, washers needed	1	unit	50.00	50.00	N		
Skid Plate	.06"HDPE	6	ft^2	5.00	30.00	N		
Firewall	.02" sheet metal	9.5	ft^2	7.75	73.63	N		

Total Costs 1243.64 1041.40

NORTHERN

UNIVERSITY

Frame Team Materials Cost: \$1041

Does not include materials sponsor discounts

Frame Budget

	Category	Relevant Items	Approximated Cost
1	Vehicle Expenses	Frame Material Paneling and Carbon Layup Safety Equipment Hardware Estimated Total	\$716 \$229 \$46 \$50 \$1041
2	Spare Parts	Welding supplies, Hardware, Tab Materials, Tubing	\$200
3	Competition Expenses Frame Sub-team	Registration, travel (hotel rooms, vehicle rentals, gas, etc.)	\$1,125
4	Contingency (5%)	Unpredicted Expenses	\$100
		Total	\$2466

Bibliography

- [90] "Side View Swing Arm Height given Percentage Anti Dive Calculator," Calculate Side View Swing Arm Height given Percentage Anti Dive,
 - https://www.calculatoratoz.com/en/side-view-swingarm-height-given-percentage-anti-dive-calculator/Calc-32332#FormulaPanel (accessed Oct. 2, 2023).
- [91] "Baja Virtual Presentation Series Day 6: suspension calculations slide (baja virtuals 2020)," YouTube, https://youtu.be/iRHNzfvKpNQ?si=ms6VxcSwpj-PEc1O (accessed Oct. 2, 2023).
- [92] "Introduction to adams/car for FSAE," YouTube, https://m.youtube.com/watch?v=L_vFjUI25r8 (accessed Oct. 2, 2023).

- [93] W. F. Milliken and D. L. Milliken, *Race Car Vehicle Dynamics*. Warrendale, Pa, 1995.
- [94] "Double wishbone suspension geometry: Designing: Calculation: Hard points: Camber vs wheel travel," YouTube, https://youtu.be/JDKgwjwlyT4?si=2ObxDxfgtZL5K ZiQ (accessed Oct. 2, 2023).
- [95] CV joints vs U-joints CJ pony parts, https://www.cjponyparts.com/resources/u-vs-cvjoints (accessed Oct. 9, 2023).

Bibliography

- [96] D. Colgrove, "Steering system for SAE baja," thesis, BYU Scholars Archive, Provo, 2019
- [97] Jazar, R.N. (2008). Steering Dynamics. In: Vehicle Dynamics: Theory and Application. Springer, Boston, MA.
- [98] LLC. Engineers Edge, "Tee section load full penetration weld perpendicular loading applied stress calculator," Engineers Edge - Engineering and Manufacturing Solutions, https://www.engineersedge.com/weld/weldcalc5.htm (accessed Oct. 10, 2023).

- [99] APSEd, "Deflection and Slope in Simply Supported Beams | Beam Deflection Table, Formula," APSEd, Jan. 17, 2021. <u>https://www.apsed.in/post/deflection-and-</u> <u>slope-in-simply-supported-beams-beam-deflection-</u> <u>table-formula</u>
- [100] "SolidWorks Education SAE Frame Analysis," YouTube. Jul. 30, 2012. Accessed: Jan. 10, 2020. [YouTube Video]. Available: https://www.youtube.com/watch?v=Pk4JRCyOTMc

