NAL

# SAE Baja '24 Capstone Team

### **Presentation 3**

Abraham Plis, Evan Kamp, Bryce Fennell Joey Barta, Lars Jensen, Seth Deluca Cooper Williams, Gabriel Rabanal, Antonio Sagaral Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger

NORTHERN ARIZONA UNIVERSITY



## **Front Team**

#### Abraham Plis, Evan Kamp, Bryce Fennell



## **Project Description**



#### What is SAE Baja?

The Society of Automotive Engineers (SAE) Baja Collegiate Design Series is an engineering challenge for students to design and build a single-seat, all-terrain vehicle.

- Compete against other universities
- 13 members total, 4 sub-teams
  - Front End, Rear End, Frame, Drivetrain
- Sponsors: See Fundraising Slide!
- Successful performance puts NAU on the map, strengthens internal Baja knowledge, and grows NAU Baja industry sponsorship connections

INIVERSITY

NAU SAE Baja 2020-2021

## **Design Description**

| ITEM NO. | PART NUMBER                       | DESCRIPTION                                             |
|----------|-----------------------------------|---------------------------------------------------------|
| 1        | Driver Knuckle 2.0                | 6061-T6 aluminum                                        |
| 2        | 63195K77                          | Swivel Joint                                            |
| 3        | Driver_Side_LCA_Final_<br>V4      | Lower Control arm                                       |
| 4        | 63195K77                          | Swivel Joint, Source: MMC                               |
| 5        | Missalignment spacer<br>.25in     | .25"ID, .75"OD Spacer                                   |
| 6        | Shoulder Bolt Spacer              | .25"ID, .125" Length                                    |
| 7        | 91273A506                         | Same-Size Thread 18-8 Stainless<br>Steel Shoulder Screw |
| 9        | Missalignment spacer<br>.25in UCA | .25"ID, .75"OD Spacer                                   |
| 10       | Driver_Side_UCA_Final<br>_V2.2    | Upper Control Arm                                       |
| 11       | 60645K121                         | Ball Joint Rod End                                      |
| 12       | 60645K121                         | Ball Joint Rod End                                      |
| 13       | Tie Rod                           | Steering Tie Rod                                        |
| 14       | CV Axle End                       | Husky 305 CV Axle End                                   |
| 15       | CV Bearing                        | 55mm OD, 30mm ID, 13mm Width                            |
| 17       | Tie Rod Ball Joint<br>Spacer      | .25"ID, .125" Height                                    |
| 18       | 90044A123                         | Black-Oxide Alloy Steel Socket<br>Head Screw            |
| 19       | 95462A029                         | Medium-Strength Steel Hex Nut                           |
| 20       | Wheel Hub                         | Example hub for fittment                                |
| 21       | 95462A538                         | Medium-Strength Steel Hex Nut                           |
| 22       | FOX Float                         | Shock, 18" Eye to Eye, 8" Stroke                        |
| 24       | Rack and Pinion                   | Steering rack, 18" Width, 5.5" Throw                    |
| 25       | CV Axle Inboard<br>Standin        | Modeled transmission for fittment                       |



### Sub Systems:

- Control arm/Knuckle interface
  - Control arm and swivel joint mounting methods
- Steering Rack
  - Rack pinion mating mechanism
- CV Axle/Knuckle interface
  - Double ball bearing compression mechanism

NORTHERN



## **Design Description – Swivel Joint**



Bryce | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

NORTH

## **Design Description – CV Interface**



### Important

### **Features:**

- Reduction of bearing OD to 55mm from 72mm
- Increase separation between bearing surfaces
- Bearings retained in knuckle with single hub bolt attached to cv end

NORTH



## **Design Description – Steering Rack**



### Important

### **Features:**

- Rack Length of 18" from eye to eye
- 5.5" rack travel end to end
- Rack ends pressed on to adjust angle of ball joints

NORTH

JNIVERSITY

Bryce | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## **Design Requirements - QFD**

| 1  | Decrease Vehicle Width               |                   |                        |                      |                           |                                      |                        |                           |        |       |              |      |             |
|----|--------------------------------------|-------------------|------------------------|----------------------|---------------------------|--------------------------------------|------------------------|---------------------------|--------|-------|--------------|------|-------------|
| 2  | Increase Ride Height                 | - i               |                        | $\sim$               |                           |                                      |                        |                           |        |       |              |      |             |
| 3  |                                      | <u> </u>          | -3                     |                      | 1                         |                                      |                        |                           |        | Lea   | end          |      | 1           |
| 4  | Increase Capability in Rough Terrain | _                 | 3                      | 9                    | 6                         | $\searrow$                           |                        |                           | А      |       | NAU #7       | 4    | -           |
| 5  | Increase Turn-In Angle               | i                 |                        | -                    |                           | 3                                    | $ \land$               |                           | В      | E     | Baia ET      | S    |             |
| 6  | Increase Crash Durability            |                   | 6                      | -3                   |                           | 6                                    |                        | $\sim$                    | c      | Co    | rnell Ra     | cina |             |
|    |                                      |                   | -                      | -                    |                           | -                                    |                        |                           | Cue    | tomor | Oninic       |      |             |
|    | Customer Needs                       | Customer Weights  | Decrease Vehicle Width | Increase Ride Height | Increase Tire Traction    | Increase Capability in Rough Terrain | Increase Turn-In Angle | Increase Crash Durability | 1 Poor | N     | 3 Acceptable | 7    | 5 Excellent |
| 1  | Comply with track dimensions         | 4                 | 9                      |                      |                           |                                      |                        |                           |        |       |              | А    | BC          |
| 2  | Adequate ground clearance            | 2                 |                        | 9                    | 6                         | 9                                    |                        | 3                         |        |       | Α            | С    | В           |
| 3  | Adequate traction                    | 3                 | 3                      | 3                    | 9                         | 6                                    | 3                      | 3                         |        |       | Α            |      | BC          |
| 4  | Safe operation over rough terrain    | 3                 | 6                      | 6                    | 3                         | 9                                    |                        | 9                         |        |       |              | ABC  |             |
| 5  | Agile manuverability                 | 4                 | 6                      | 3                    | 6                         | 3                                    | 9                      |                           |        |       |              | А    | BC          |
| 11 | Robust design                        | 3                 |                        | 3                    |                           | 3                                    |                        | 9                         |        |       | BC           | Α    |             |
|    | Technical F                          | Requirement Units | Inches                 | Inches               | Degrees<br>(Scrub<br>Rad) | Inches<br>(Wheel<br>Travel)          | Degrees                | чдт                       |        |       |              |      |             |
|    | Technical Red                        | quirement Targets | 64                     | 10                   | 0                         | 12                                   | 40-100                 | 40                        |        |       |              |      |             |
|    | Absolute Tec                         | hnical Importance | 87                     | 66                   | 72                        | 84                                   | 45                     | 69                        |        |       |              |      |             |
|    | Relative Tec                         | hnical Importance | ~                      | 5                    | ю                         | N                                    | 9                      | 4                         |        |       |              |      |             |

ER to ER

#### **Positive Correlation**

 Capability in rough terrain & ride height

#### **Inverse Correlation**

 Tire traction & vehicle width

### CR to ER

#### **Positive Correlation**

- Comply with track dimensions & vehicle width
- Adequate ground clearance & ride height

NORTHERN

RIZONA

 Agile maneuverability & turn-in angle

Evan | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## **Design Requirements - ERs**

| CR                                   | ER                                      | Parameter       | Target | Current<br>Design | Acceptable?  |
|--------------------------------------|-----------------------------------------|-----------------|--------|-------------------|--------------|
| Comply with Track<br>Dimensions      | Decrease Vehicle Width                  | Track Width     | <64"   | 62.8″             | $\checkmark$ |
| Adequate Ground<br>Clearance         | Increase Ride Height                    | Ride Height     | >10"   | 10.5″             | $\checkmark$ |
| Adequate Traction                    | Increase Tire Traction                  | Scrub Radius    | ±0"    | 0.34"             | $\checkmark$ |
| Safe Operation Over<br>Rough Terrain | Increase Capability in<br>Rough Terrain | Wheel Travel    | ±12"   | 13″               | $\checkmark$ |
| Agile Maneuverability                | Increase Turn-In Angle                  | Pro-Ackerman    | >40%   | 48%               | $\checkmark$ |
| Robust Design                        | Increase Crash Durability               | Collision Speed | 20mph  | N/A               | N/A          |

Full front end assembly will be tested in FEA to verify impact performance at various speeds ASAP

NORTHERN

ARIZONA

## **Engineering Calculations - Abe**

#### **Control Arm Pivot Shoulder Bolt Sizing**



# Engineering Calculations - Abe Control Arm Construction Drawings

**Upper Control Arm** 

**Lower Control Arm** 





11

These engineering drawings play a vital role in calculating cut angles on the pipe cutting vice and getting pipe lengths between members correct for prototyping and beyond!

Abe | SAE Baja '24 | F23toSp24 09 | November 6th, 2023

## **Engineering Calculations - Bryce**

#### Knuckle Upper Control Arm Mounting Interface

|  | Pro<br>G   | oblem<br>ivens   | • M<br>• M<br>• M<br>• S                       | Material: 606<br>Maximum Im<br>Minimum cro<br>Shear Strengt | 1-T6 Aluminu<br>pact force: 22<br>ss-sectional a<br>h: 3770ksi | im Billet<br>200lbf through wh<br>irea: 1.179 in^2         | eel                                          |                           |  |
|--|------------|------------------|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|---------------------------|--|
|  | Gov<br>Equ | vernin<br>lation | $\begin{bmatrix} F_{s} \\ A_{N} \end{bmatrix}$ | shear,Aluminu<br>Iinimum Cross                              | $m = S_{shear}$                                                | * A <sub>Minimum</sub> Cross S<br>.se * height <b>Fo</b> S | Section<br>$\mathbf{S} = \frac{F_s}{F_{sh}}$ | shear,bolt<br>lear,impact |  |
|  | Base       | Height           | Area (in^2)                                    | Impact Force (lbf)                                          | Shear force (kpsi                                              | Shear Strength 6061 (kpsi)                                 | FOS                                          |                           |  |
|  | 1.66       | 0.71             | 1.1786                                         | 2200                                                        | 2592.92                                                        | 3770                                                       | 1.453959                                     |                           |  |
|  |            |                  |                                                |                                                             |                                                                |                                                            |                                              |                           |  |

**Results** A calculated FOS of 1.45 is suitable for our applications; however, to account for unforeseen impacts, modifications will be made to accommodate a FOS of 3 for this critical feature

Bryce | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

INIVERSITY

## **Engineering Calculations - Bryce**

#### Knuckle Upper Control Arm Mounting Interface



Results generated from SolidWorks

- After performing a simple FEA simulation on the knuckle in using the SolidWorks simulation add-in, a calculated factor of safety of 1.197 was determined at the point of minimum cross-sectional area.
- Using this information, a revised design will be created aimed at increasing the factor of safety to 3

Additional notes

Due to the criticality of this feature, a higher FOS is desired to ensure the knuckle can withstand unforeseen circumstances during testing or racing.



## **Engineering Calculations - Evan**

Hypothetical Weight of Vehicle with Driver 450lbs / 205kg

 $\frac{1}{2}$  (450lbs) = 225lbs on the front two tires

Under the Assumption that there is a perfectly centered center of gravity

Cornering Mass on One Front Wheel112.5lbs / 51.25kgFriction Force Calculation $f = \mu N$ Friction Coefficient for Asphalt.9Normal Force (N)3622.5 lb(ft/s^2)Force of Friction on front two wheels3260.25 lb(ft/s^2)



Evan | SAE Baja '24 | F23toSp24 09 | November 6th, 2023

## **Engineering Calculations - Evan**



| Contact Patch (Yellow)                | 7.5in / 0.625ft     |
|---------------------------------------|---------------------|
| Torque due to friction force on Wheel | 2037.5 lb(ft/s^2)ft |
| Lateral Push Distance (Orange)        | 4 in / .333ft       |

Torque due to Lateral Push

 $T_{lpush} = f_t * Distance from Tire Rod to Kingpin Axis$ 

 $T_{lpush} = T_{friction}$ 

 $f_t = 6117.12 \text{ lb(ft/s^2) or 85N}$ 



VORT

UNIVERSITY

## **Design Validation – UCA**

| Part # and Potential Failure<br>Functions Mode |                       | Potential Effect(s) of Failure            | ential Effect(s) of Failure Potential Causes and Mechanisms of Failure |    | Recommended Action                            |
|------------------------------------------------|-----------------------|-------------------------------------------|------------------------------------------------------------------------|----|-----------------------------------------------|
| UCA Shoulder<br>Bolt                           | Impact Fatigue        | Erratic Operation, Poor<br>Appearance     | Overstressing                                                          | 30 | Use 3/8" Shoulder Bolts                       |
| UCA Shoulder<br>Bolt                           | Impact Fracture       | Erratic Operation, Poor<br>Appearance     | Impact Loading                                                         | 30 | Use 3/8" Shoulder Bolts                       |
| UCA Pivot Tubing Impact Fatigue                |                       | No Longer Operational, Poor<br>Appearance | Overstressing                                                          | 9  | Limit Length and Check<br>Welds               |
| UCA Pivot Tubing Impact Fracture               |                       | No Longer Operational, Poor<br>Appearance | Impact Loading                                                         | 9  | Limit Length and Check<br>Welds               |
| UCA Long<br>Member(s) Impact Fatigue           |                       | No Longer Operational, Poor<br>Appearance | Overstressing                                                          | 18 | Limit Torsion on UCA and<br>Check Welds       |
| UCA Long<br>Member(s)                          | Impact<br>Deformation | No Longer Operational, Poor<br>Appearance | Impact Loading                                                         | 18 | Limit Torsion on UCA and<br>Check Welds       |
| UCA Shock Mount                                | Impact Fatigue        | No Longer Operational, Poor<br>Appearance | Overstressing                                                          | 30 | Strengthen mount with addition weld/plates    |
| UCA Shock Mount                                | Impact Fracture       | No Longer Operational, Poor<br>Appearance | Impact Loading                                                         | 30 | Strengthen mount with<br>addition weld/plates |
| UCA Ball Joint<br>Cup                          | Impact Fatigue        | No Longer Operational, Poor<br>Appearance | Overstressing                                                          | 30 | Orient properly relative to<br>knuckle motion |
| UCA Ball Joint<br>Cup                          | Impact Fracture       | No Longer Operational, Poor<br>Appearance | Impact Loading                                                         | 30 | Orient properly relative to<br>knuckle motion |

### Failures

- Shoulder Bolts
- $\circ~$  Welded Points
  - Ball Joint
  - Joined Members
- Tubing Lengths

### Mitigation

- 3/8" Shoulder Bolts
- Run FEA, Verify Welds, Brace Welded Areas
- Keep Arms Compact,Brace Long Lengths

ARIZONA

## **Design Validation – LCA**

| Part # and Potential Failure<br>Functions Mode |                       | Potential Effect(s) of Failure<br>of Failure        |                | RPN | Recommended Action                         |
|------------------------------------------------|-----------------------|-----------------------------------------------------|----------------|-----|--------------------------------------------|
| LCA Shoulder Bolt Impact Fatigue               |                       | Erratic Operation, Poor<br>Appearance Overstressing |                | 30  | Use 3/8" Shoulder Bolts                    |
| LCA Sholder Bolt                               | Impact Fracture       | Erratic Operation, Poor<br>Appearance               | Impact Loading | 30  | Use 3/8" Shoulder Bolts                    |
| LCA Pivot Tubing Impact Fatigue                |                       | No Longer Operational, Poor<br>Appearance           | Overstressing  | 8   | Limit Length and Check Welds               |
| LCA Pivot Tubing Impact Fracture               |                       | No Longer Operational, Poor<br>Appearance           | Impact Loading | 8   | Limit Length and Check Welds               |
| LCA Long<br>Member(s)                          | Impact Fatigue        | No Longer Operational, Poor<br>Appearance           | Overstressing  | 64  | Raise ride height and check welds          |
| LCA Long<br>Member(s)                          | Impact<br>Deformation | No Longer Operational, Poor<br>Appearance           | Impact Loading | 64  | Raise ride height and check welds          |
| LCA Ball Joint Cup                             | Impact Fatigue        | No Longer Operational, Poor<br>Appearance           | Overstressing  | 30  | Orient properly relative to knuckle motion |
| LCA Ball Joint Cup                             | Impact Fracture       | No Longer Operational, Poor<br>Appearance           | Impact Loading | 30  | Orient properly relative to knuckle motion |
| LCA Bracing                                    | Impact Fatigue        | Flying Debris, Poor Appearance                      | Overstressing  | 15  | Limit length and check welds               |
| LCA Bracing                                    | Impact Fracture       | Flying Debris, Poor Appearance                      | Impact Loading | 15  | Limit length and check welds               |

### **Failures**

- $\circ~$  Shoulder Bolts
- Welded Points
  - Ball Joint
  - Joined Members
- Tubing Lengths

### Mitigation

- 3/8" Shoulder Bolts
- Verify Welds, Run FEA, Brace Welded Areas
- Keep Arms Compact, Brace Long Lengths

• Raise Ride Height

## **Design Validation – Knuckle**

| Part # and<br>Functions    | Potential Failure<br>Mode | Potential Effect(s) of Failure         | Potential<br>Causes and<br>Mechanisms of<br>Failure | RPN | Recommended Action                          |
|----------------------------|---------------------------|----------------------------------------|-----------------------------------------------------|-----|---------------------------------------------|
| UCA Knuckle Shoulder Bolt  | Impact Fatigue            | Knuckle detatch from Control Arm       | Overstressing                                       | 30  | Increase Bolt Diameter to 3/8"              |
| UCA Knuckle Shoulder Bolt  | Impact Fracture           | Knuckle detatch from Control Arm       | Impact Loading                                      | 40  | Increase Bolt Diameter to 3/8"              |
| UCA Alignment Spacer       | Impact Fatigue            | Inconsistant Operation                 | Overstressing                                       | 8   | Change material to steel from aluminum      |
| UCA Alignment Spacer       | Impact Fracture           | Inconsistant Operation                 | Impact Loading                                      | 8   | Change material to steel from aluminum      |
| LCA Knuckle Shoulder Bolt  | Impact Fatigue            | Knuckle detatch from Control Arm       | Overstressing                                       | 30  | Increase Bolt Diameter to 3/8"              |
| LCA Knuckle Shoulder Bolt  | Impact Fracture           | Knuckle detatch from Control Arm       | Impact Loading                                      | 40  | Increase Bolt Diameter to 3/8"              |
| LCA Alignment Spacer       | Impact Fatigue            | Lower Suspension Effectivenenss        | Overstressing                                       | 8   | Change material to steel from aluminum      |
| LCA Alignment Spacer       | Impact Fracture           | Lower Suspension Effectivenenss        | Impact Loading                                      | 8   | Change material to steel from aluminum      |
| Tie Rod Shoulder Bolt      | impact fracture           | Knuckle detatch from Tie Rod           | Overstressing                                       | 40  | Increase Bolt Diameter to 3/8"              |
| Tie Rod Shoulder Bolt      | impact fatigue            | Knuckle detatch from Tie Rod           | Impact Loading                                      | 30  | Increase Bolt Diameter to 3/8"              |
| Tie Rod Bolt Spacer        | impact fatigue            | Lower Steering Effectiveness           | Overstressing                                       | 12  | Change material to steel from aluminum      |
| Knuckle LCA Lower Mount    | Impact Deformation        | Knuckle detatch from Control Arm       | Impact Loading                                      | 40  | Increase material thickness to 5" from 3"   |
| Knuckle LCA Lower Mount    | impact fatigue            | Knuckle detatch from Control Arm       | Overstressing                                       | 40  | Increase material thickness to .5" from .3" |
| Knuckle LCA Bolt Thread    | impact fatigue            | LCA Shoulder Bolt detatch from knuckle | Overstressing                                       | 54  | Increase bolt thread to 3/8"x20             |
| Knuckle LCA Bolt Thread    | impact fracture           | LCA Shoulder Bolt detatch from knuckle | Impact Loading                                      | 54  | Increase bolt thread to 3/8"x20             |
| Knuckle Tie Rod Mount Tab  | impact deformation        | Tie Rod detatch from knuckle           | Impact Loading                                      | 40  | Increase tab thickness to .3" from .2"      |
| Knuckle Tie Rod Mount Tab  | Impact Fatigue            | Tie Rod detatch from knuckle           | Overstressing                                       | 40  | Increase tab thickness to .3" from .2"      |
| Knuckle UCA Extension      | Impact Deformation        | UCA Detach from knuckle                | Impact Loading                                      | 50  | Increase CX area to decrease bending moment |
| Knuckle Bearing Bore       | Impact Deformation        | Lower drive effectiveness              | Impact Loading                                      | 3   | Harden inner surface of bearing bore        |
| Knuckle Bearing seperation | Impact deformation        | lower drive/steering effectiveness     | Impact Loading                                      | 4   | Increase thickness of bearing separation    |

Failures

- Knuckle LCA Thread pullout
  - Thread deformation
- Knuckle UCA Mount
  - Mount deformation/fracture

### Mitigation

- Increase bolt thread size
- Increase material at point of max bending moment

Bryce | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## **Design Validation – Steering**

| Part #<br>and Functions                       | Potential<br>Failure Mode | Potential Effect(s) of<br>Failure                         | Potential Causes<br>and Mechanisms of<br>Failure | RPN | Recommended Action                                         |   |
|-----------------------------------------------|---------------------------|-----------------------------------------------------------|--------------------------------------------------|-----|------------------------------------------------------------|---|
| Knuckle<br>Connection                         | Impact Fatigue            | Broken Knuckle connection<br>to steering arm              | Overstressing                                    | 20  | Conduct FEA on Knuckle<br>tab                              |   |
| Knuckle<br>Connection                         | Impact Fracture           | Broken Knuckle connection<br>to steering arm              | Impact Loading                                   | 40  | Conduct FEA on Knuckle<br>tab                              |   |
| Steering Arm<br>Carbon Tubing Impact Fatigue  |                           | Broken Steering arm<br>hindering steering<br>capabilities | Overstressing                                    | 16  | Limit Length                                               |   |
| Steering Arm<br>Carbon Tubing Impact Fracture |                           | Broken Steering<br>arm hindering steering<br>capabilities | Impact Loading                                   | 16  | Limit Length and check<br>Clearence and skid<br>protection |   |
| Steering Arm<br>Tubing Insert                 | Sheer Strength            | Threaded insert pulls out of<br>carbon steering arm       | Overstressing through<br>Tension                 | 16  | Use of Epoxy to increase tensile strength                  | l |
| Steering Arm<br>Tubing Insert                 | Impact Deformati<br>on    | Threaded insert damaged from impact                       | Impact Loading                                   | 16  | Check clearance and<br>impact protection                   | l |
| Steering Column                               | Torsion                   | Breaking carbon steering column                           | Overstressing through<br>Torsion                 | 16  | Recommend using a 16mm OD x 14mm ID tube                   |   |
| Steering Column Sheer of Bolt                 |                           | Bad steering performance<br>and broken column             | Overstressing of bolt                            | 16  | Epoxy spline insert to tube<br>in addition to using bolt   |   |
| Rack and Pinion                               | Contact Wear              | Poor Steering Performance                                 | Gradual wear of the rack and pinion assembly     | 60  | Use of brass bushings with<br>lubrication                  |   |

### Failures

Rack and Pinion Gradual
 Wear effecting steering
 performance

### Mitigation

 Properly use lubricant to ensure wear is minimal within the gearbox.



### Design Validation – Testing Procedure

Testing will be completed in a variety of ways. Due to the expensive nature of the knuckle and other components within the front-end assembly, the team will use both online FEA Modeling as well as physical testing.

**Control Arm Construction** 

- The control arms have been tested thoroughly by Ansys FEA Software
- To pass tech inspection, welds must be certified thus proving the construction of the control arm

#### Steering System

- The steering system will be tested once the car is constructed with digital angle gauges and the turning radius of the vehicle will be tested. Design testing was already completed thoroughly in Lotus Shark Software.
- The tensile strength of the tire arms may be tested to ensure that the threaded insert mate adequately with the carbon tubing used.

**Knuckle Construction** 

- The knuckle has been tested thoroughly with FEA Ansys analysis.
- The knuckle will be tested with strain gauges once constructed.

## **Scheduling Moving Forward**

| Date       | Deliverable                                                        |
|------------|--------------------------------------------------------------------|
| 11/17/23   | Prototype 1 Completed                                              |
| 11/20/23   | Last day to register for Gorman Competition $\checkmark$           |
| 11/24/23   | Report 2                                                           |
|            | Final Cad in SolidWorks completed in addition to Bill of Materials |
| 11/27/23   | Second Prototype Demonstration                                     |
| 12/1/23    | Second Prototype Demonstration                                     |
| 12/2/23    | Begin Welding Frame                                                |
| 3/20/24    | Car is functioning and drivable                                    |
| 4/20/24    | Car Prepped for Tech Inspections                                   |
| 4/25-28/24 | Gorman Competition                                                 |



## **Front End Budget**

|   | Category                                  | Relevant Items                                                                             | Approximated Cost                        |                                                                                                                                              |
|---|-------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                           | Brake System<br>Control Arm Materials                                                      | \$1,000<br>\$120                         | No Expenses Accumulated                                                                                                                      |
| 1 | Vehicle Expenses                          | Rod-ends/Ball Joints<br>Shock Rebuild<br>Knuckle Material/Manufacturing<br>Estimated Total | \$50<br>\$126<br>\$1600<br><b>\$2649</b> | All <b>prototyping</b> used<br><b>existing shop materials</b><br>or was cheap enough<br>to be <b>personally</b><br><b>funded/fabricated!</b> |
| 2 | Spare Parts                               | Rod-ends, Bushings, Welding supplies, Hardware                                             | \$500                                    |                                                                                                                                              |
| 3 | Competition<br>Expenses<br>Front Sub-team | Registration, travel (hotel rooms, vehicle rentals, gas, etc.)                             | \$1,125                                  |                                                                                                                                              |
| 4 | Contingency (5%)                          | Unpredicted Expenses                                                                       | \$400                                    |                                                                                                                                              |
|   |                                           | Total                                                                                      | \$4,674                                  | ARIZON                                                                                                                                       |

Abe | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## Fundraising & Sponsors Update



Free material and laser cutting for the construction of the vehicle.

**Monetary Donation** 

**Beverage Donation** 

Metal Stock for Primary Member construction Donation

Carbon Construction for Components

Donation of Titanium Stock and Hardware

**Monetary Donation** 

NORTHERN ARIZONA UNIVERSITY

Evan | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

### NAL

## **Rear Team**

#### Seth DeLuca, Joey Barta, Lars Jensen



24

### **Design Description – Rear Assembly**

| -           |                                       |                                                 |      |
|-------------|---------------------------------------|-------------------------------------------------|------|
| ITEM<br>NO. | PART NUMBER                           | DESCRIPTION                                     | QTY. |
| 1           | Suspension Geometry Long Link         |                                                 | 1    |
| 2           | Trailing Link Rod End Insert          |                                                 | 1    |
| 3           | 60645K171                             | Ball Joint Rod End                              | 1    |
| 4           | Shock Spacer Bottom                   |                                                 | 2    |
| 5           | bottom cylinder                       |                                                 | 1    |
| 6           | top cylinder                          |                                                 | 1    |
| 7           | cap                                   |                                                 | 2    |
| 8           | bearing                               |                                                 | 2    |
| 9           | 91271A646                             | Alloy-Steel 12-Point Screw                      | 2    |
| 10          | 92018A111                             | High-Strength Steel Nylon-Insert Flange Locknut | 1    |
| 11          | CV Axle End                           |                                                 | 1    |
| 12          | wheel (1)                             |                                                 | 1    |
| 13          | 91271A802                             | Alloy-Steel 12-Point Screw                      | 1    |
| 14          | skf_bearing_6006_2_01                 |                                                 | 2    |
| 15          | skf_bearing_6006_2_02                 |                                                 | 2    |
| 16          | skf_bearing_6006_2_03                 |                                                 | 2    |
| 17          | carbon link steel insert V1           |                                                 | 4    |
| 18          | 60645K141                             | Ball Joint Rod End                              | 4    |
| 19          | steel pipe camber link<br>(1Dx0.035t) |                                                 | 2    |
| 20          | 95462A538                             | Medium-Strength Steel Hex Nut                   | 1    |
| 21          | Part2^Rear Suspension Assemby<br>V3   |                                                 | 1    |
| 22          | Wheel Spacer                          |                                                 | 1    |
| 23          | 91271A641                             | Alloy-Steel 12-Point Screw                      | 4    |
| 24          | 90630A155                             | High-Strength Steel Nylon-Insert Locknut        | 2    |
| 25          | 91271A712                             | Alloy-Steel 12-Point Screw                      | 4    |
| 26          | HubV3                                 |                                                 | 1    |
|             |                                       | -                                               |      |



## Sub Systems:

- Trailing link
  - Rod end and shock
     mount location
- Camber Links
- Hub
  - Wheels spacers
- CV Axle/Knuckle interface
  - Double ball bearing compression mechanism

NORTHERN ARIZONA UNIVERSITY 25

Lars | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

### Design Description – Rear CV End Spacing



### Sub Systems:

- Hub
  - Wheel mounts
- Knuckle
  - Houses two bearings for the axle end
- CV spacer
  - Allows for no slop on the axle end.
- -538 bolt
  - Tightens all parts together on axle

NORTHERN ARIZONA UNIVERSITY 26

### **Design Description – Trailing Link**



### Important Features:

- Drilled out knuckle to decrease weight
- Camber links mounts reinforced with ribs
- Trailing link reinforced with laser cut steel plate

NORTH

27



### **Design Description – Hub**



## Important

### **Features:**

- Shelled arms to eliminate unneeded material while maintaining integrity
- Threaded holes, so just have tighten the nuts

NORTHERN

JNIVERSITY

28

Made of 6061 Aluminum
 Alloy

### **Design Description – Camber Links**

| ITEM NO | O. PART NUMBER                                                  | DESCRIPTION        | QTY.                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                 |                    |              | Importai                                                                                                                                                                         | ht            |
|---------|-----------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2       | iink (1Dx0.0351)<br>carbon link steel<br>insert V1<br>60645K141 | Ball Joint Rod End | 2                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                 |                    |              | Eastura                                                                                                                                                                          |               |
| 3       | 2                                                               | 5                  | <br>_]====                                                                                                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                 |                    |              | <ul> <li>Tubing made of Carbo</li> <li>Inserts made from 600<br/>Aluminum</li> <li>Rod Ends made from<br/>stainless steel</li> <li>2<sup>nd</sup> iteration of design</li> </ul> | n Fiber<br>51 |
|         |                                                                 |                    |                                                                                                                                  |                               | UNLESS CONFERENCE SPECIFICS<br>DIMENSIONAL ARE IN INCLUS<br>FOLDERINGES<br>AND DEVELOPMENT<br>AND DEVELOPMENT<br>AND DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRAINT<br>CHECKED | nikanii Dikitii | TIFLE:             |              |                                                                                                                                                                                  |               |
|         |                                                                 |                    | PROPERTIESY AND COMPENSION<br>THE INFORMATES I DOMINISTIC IN THE<br>EARSHID STREETS PROPERTY OF<br>VIDEO COMPANY INSURFACES. ANY |                               | Nich PLACE DECRAL<br>INRE PLACE DECRAL<br>BETWEEN DECRETED<br>EXTENSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION<br>INACESSION | Gra.              | 6               |                    | c Stool V    |                                                                                                                                                                                  |               |
|         |                                                                 |                    | SHER SOLDED SUB PART DR AN A VERSUE<br>STREET DE WATERS PROVIDEN OF<br>VERSUE DE WATERS (MARE MERCES)<br>PROVIDENTS.             | NETTADY LEELON<br>APPLICATEDE | DO NOT SCALE DRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                 | C               | SCALE: 1:5 WEIGHT: | SHEET 1 OF 1 |                                                                                                                                                                                  | NO            |

UNIVERSITY

29

## **Design Requirements - QFD**



### ER to ER

#### **Positive Correlation**

Vehicle width & linkage radii

#### **Inverse Correlation**

- Increasing ground
  - clearance & weight

### CR to ER

#### **Strong Correlations**

- Reliability & Decrease CV axle angle, Increase Strength
- Low cost & decrease weight, Increase strength

NORTHERN

ARIZONA

Seth | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## **Engineering Calculations - Lars**

#### **Rear Knuckle Bearings**



Two SKF 6006 Deep Groove Ball Bearings

*Outside Bearing Diameter* = D = 2.165 *in* 

Force  $Fit \rightarrow H7/u6 \rightarrow IT7 \rightarrow \Delta D = 0.0012$  in

 $D_{max} = D + \Delta D = 2.165 in + 0.0012 in = 2.1662 in$ 

 $D_{min} = D = 2.165 in$ 

## **Engineering Calculations - Seth**

Hub



Results generated from SolidWorks

- After performing a simple FEA simulation on the Hub using the SolidWorks simulation add-in, a calculated factor of safety of 1.228 was determined at the point highest stresses (which were where the fixtures were placed)
- This study showed there were 2 points near the fixed points that were having high stress.
   Another iteration can be ran eliminating more material.



Seth | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

## **Engineering Calculations - Joey**

#### **Carbon Fiber Rod**

 $\begin{array}{l} R_{o} = 0.31495in \\ R_{i} = 0.2362in \\ L = 16.13 \ in \\ L_{eff} = L \times k = L \\ V = 2.1994 \ in^{3} \\ A_{cs} = 0.136355 \ in^{2} \\ I_{z} = \left(\frac{m}{2}\right) \times \left(R_{o}^{2} + R_{i}^{2}\right) = 0.010191 \ in^{4} \\ R = 0.27338 \end{array}$ 

 $E = 50,763,199.98 \ psi$   $\sigma_y = 1,547 - 467,000 \ psi$   $\rho = 0.0614 \frac{lb}{in^3}$   $m = 0.131510 \ lb$  $Pinned - Pinned \gg k = 1$ 

Assumptions and B.C.

If  $S < S_{crit}$  use Johnsons Formula

Johnsons Formula =  $\sigma_y \times A_{cs} \left[ 1 - \left(\frac{\sigma_y}{4\pi^2 E}\right) \left(\frac{LE}{R}\right)^2 \right]$ Eulers Formula =  $\frac{\pi^2 EI}{L_{eff}^2}$ 

 $F_{crit} = 1,547 \ lbf \gg 26,257 \ lbf$ 

With an assumed minimum  $\sigma_y$  of 11,600 psi, the minimum  $F_{crit}$  is 1,547 lbf. The significance of this force will be explained in the Design Validation Slide.

NORTHERN ARIZONA UNIVERSITY

Results

## **Design Validation – Trailing Link**

| Part # and Potential Failure<br>Functions Mode |                       | Potential Effect(s) of Failure                            | Potential Causes and<br>Mechanisms of Failure | RPN | Recommended Action                                |
|------------------------------------------------|-----------------------|-----------------------------------------------------------|-----------------------------------------------|-----|---------------------------------------------------|
| Rod End Impact Fatigue                         |                       | Improper Geometry,<br>Suspension Binding                  | Impact Loading                                | 42  | Use 5/8" Rod End                                  |
| Rod End Abrasive Wear                          |                       | Improper Geometry,<br>Suspension Binding Poor Maintenance |                                               | 42  | Use 5/8" Rod End                                  |
| Rod End<br>Hardware                            | Impact Fatigue        | No Longer Operational, Poor<br>Appearance                 | Overstressing                                 | 24  | Use 5/8" Hardware                                 |
| Rod End<br>Hardware Impact Fracture            |                       | No Longer Operational, Flying<br>Debris                   | Impact Loading                                | 24  | Use 5/8" Hardware                                 |
| Steel Tubing                                   | Impact Fatigue        | Erratic Operation, Poor<br>Appearance                     | Overstressing                                 | 8   | Reinforce tubing with steel plate                 |
| Steel Tubing                                   | Impact<br>Deformation | Improper Geometry,<br>Suspension Binding                  | Impact Loading                                | 8   | Reinforce tubing with steel plate                 |
| Side Support<br>Steel Plate                    | Impact Fatigue        | No Longer Operational, Erratic<br>Operation               | Assembly Errors                               | 96  | Maximize welding surface<br>and use cross members |
| Side Support<br>Steel Plate                    | Impact Fracture       | No Longer Operational, Flying<br>Debris                   | Impact Loading                                | 96  | Maximize welding surface<br>and use cross members |
| Shock Hardware Impact Fatigue                  |                       | No Longer Operational, Poor<br>Appearance                 | Overstressing                                 | 12  | Choose higher grade<br>hardware                   |
| Shock Hardware                                 | Impact Fracture       | No Longer Operational, Flying<br>Debris                   | Impact Loading                                | 12  | Choose higher grade<br>hardware                   |

### Failures

- o Rod Ends
- Hardware
  - Rod Ends
  - Shock
- Weld Points

### Mitigation

- 5/8" Hardware
- Maximize welding surface area
- Add cross members to welded areas

ARIZONA

34

### Design Validation – Hub/CV/Spacer/Wheel Mounts

|                             | Part # and Functions      | Potential Failure<br>Mode | Potential Effect(s) of Failure            | Potential Causes<br>and Mechanisms<br>of Failure       | RPN | Recommended Action                  |
|-----------------------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------------------------------|-----|-------------------------------------|
|                             | CV Axle End               | Impact<br>Fatigue         | Erratic operation, Poor performance       | Overstressing                                          | 0   | Will not happen.                    |
|                             | CV spline                 | Slipping                  | Loss of power transferred<br>to the wheel | f power transferred Too high of to the wheel tolerance |     | Ensure tight fit for hub and spline |
|                             | Bolts from hub -<br>wheel | Shearing                  | Flying Debris/ No longer<br>operational   | Material selection                                     | 14  | Choose high quality<br>hardware     |
|                             | Nuts                      | Stripping                 | Flying debris/ No longer<br>operational   | Assembly error                                         | 10  | Choose high quality hardware        |
|                             | Arms to wheel             | Impact<br>Deformation     | Flying debris/ No longer<br>operational   | Impact<br>Loading/<br>Overstressing                    | 30  | Choose high quality<br>hardware     |
|                             | Steel Hex Nut             | Stripping                 | Flying debris/ No longer<br>operational   | Overstressing/<br>Assembly<br>Error                    | 30  | Choose high quality hardware        |
| CV Spacer Impact<br>fatigue |                           | Impact<br>fatigue         | Moving parts on CV/ Poor<br>performance   | Overstressing                                          | 24  | Use steel instead of aluminum       |

### **Failures**

- $\circ \ \ \text{Hub spline}$
- CV Hardware
- o Hub
  - o Arms
  - Hardware

### Mitigation

- Strong material selection
- Eliminating wiggle in the spacer
- Ensure a tight fit for hub spline

35

## **Design Validation – Camber Links**

| Part # and<br>Functions                  | Potential Failure<br>Mode | Potential Effect(s) of Failure            | Potential Causes<br>and Mechanisms<br>of Failure | RPN | Recommended Action                         |
|------------------------------------------|---------------------------|-------------------------------------------|--------------------------------------------------|-----|--------------------------------------------|
| Carbon Fiber tube                        | Impact Fracture           | Detrimental Failure of Rear<br>Suspension | Impact Loading                                   | 45  | Extensive Testing Under<br>Different Loads |
| Aluminum<br>Composite threaded<br>Insert | Surface Fracture          | Detrimental Failure of Rear<br>Suspension | Overstressing                                    | 12  | Extensive Testing Under<br>Different Loads |
| Steel Tubing                             | Impact Fatigue            | Difficult and Unpredictive<br>Performance | Impact Loading                                   | 36  | Strong Welds                               |
| Rod End                                  | Impact Wear               | Difficult and Unpredictive<br>Performance | Impact<br>Loading/Improper<br>Maintenence        | 54  | Proper Lubrication                         |
| Black-Oxide Screws                       | Impact Fatigue            | Difficult and Unpredictive<br>Performance | Overstressing                                    | 30  | High Diameter, Small Pitch<br>Screws       |
| Titanium Screws                          | Impact Fatigue            | Difficult and Unpredictive<br>Performance | Overstressing                                    | 45  | High Diameter, Small Pitch<br>Screws       |
| High Strength Glue                       | Surface Fracture          | Detrimental Failure of Rear<br>Suspension | Impact Loading                                   | 36  | Extensive Testing Under<br>Different Loads |

### Failures

- $\circ~$  Carbon Fiber Links
  - $\circ$  Carbon Fiber Tube
  - High Strength Glue
- $\circ ~~ \textbf{Rod Ends}$

### Mitigation

- Testing Both Steel and CF
   Rods under High Stress
- Maintenance



Joey | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023
# **Design Validation – Knuckle**

| Part # and<br>Functions                                                                                               | Part # and<br>FunctionsPotential Failure<br>ModePotential Effect(s) of Failure          |                                         | Potential Causes<br>and Mechanisms<br>of Failure | RPN                                                   | Recommended Action                                    |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Steel Round Bar                                                                                                       | Impact Fatigue                                                                          | Erratic Operation, Poor<br>Appearance   | Overstressing                                    | 42                                                    | Maintain adequate amount of<br>support material       |
| Steel Round Bar Impact Fracture No Longer Operational Debris                                                          |                                                                                         | No Longer Operational, Flying<br>Debris | Impact Loading 42                                |                                                       | Maintain adequate amount of<br>support material       |
| Camber Link<br>MountsHigh-Cycle<br>FatigueErratic Operation, Poor<br>Appearance                                       |                                                                                         | Overstressing                           | 8                                                | Maximize welding surface                              |                                                       |
| Camber Link<br>MountsBucklingNo Longer Operationa<br>Debris                                                           |                                                                                         | No Longer Operational, Flying<br>Debris | Overstressing                                    | 8                                                     | Maximize welding surface                              |
| Camber Link<br>Hardware                                                                                               | Camber Link<br>HardwareImpact FatigueNo Longer Operational,<br>Appearance               |                                         | Overstressing                                    | 6                                                     | Choose high quality hardware                          |
| Camber Link<br>Hardware                                                                                               | Corrosion<br>Fatigue                                                                    | Erratic Operation, Poor<br>Appearance   | Poor Maintenance                                 | 6                                                     | Choose high quality hardware                          |
| CV Bearings                                                                                                           | High-Cycle<br>Fatigue                                                                   | No Longer Operational, Flying<br>Debris | Impact Loading                                   | 24                                                    | Use oversized single roller<br>bearings               |
| CV Bearings                                                                                                           | CV Bearings Abrasive Wear Erratic Operation, Poor Appearance P                          |                                         | Poor Maintenance                                 | 24                                                    | Use oversized single roller<br>bearings               |
| Trailing Link Weld                                                                                                    | Trailing Link Weld         Impact Fatigue         Erratic Operation, Poor<br>Appearance |                                         | Overstressing                                    | 18                                                    | Reinforce contact area with<br>additional steel plate |
| Trailing Link Weld         Impact Fracture         Flying Debris, No Longer           Operational         Operational |                                                                                         | Impact Loading                          | 18                                               | Reinforce contact area with<br>additional steel plate |                                                       |

### Failures

- $\circ~$  Steel Round Bar
- $\circ~$  Welded Points
  - Camber Mounts
  - $\circ \ \ \text{Trailing Link}$
- Hardware

### Mitigation

 Don't cut away too much material

ARIZONA

- Reinforce weld points
- Choose corrosive

resistant hardware

## Design Validation – Testing Procedure

#### **Trailing Link**

- The welded trailing links will be placed in a jig with a hydraulic press applying vertical force to test for deflection and failure along the link.
- Strain gauges will be used during this testing.
- CV End Spacing
  - The CV spacing was tested by prototyping the system as it currently stands. This will reinforce the teams' design concept and find areas the team has not thought about entirely.

#### **Camber Links**

- A CF camber link tube will be placed in a jig with a hydraulic press applying a baseline force of 1,547 lbf.
- More realistic testing with the link installed will be carried out through 'crash testing' to mimic what the link will undergo at the track.



# **Rear End Budget**

|   | Category                                  | Relevant Items                                                 | Approximated Cost      |                                                                                                   |
|---|-------------------------------------------|----------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------|
| 1 | Vehicle Expenses                          | Suspension System<br>Drive System<br>Prototyping               | \$410<br>\$850<br>\$50 | No Expenses Accumulated<br>All prototyping used<br>existing shop materials<br>or was cheap enough |
|   |                                           | Estimated lotal                                                | \$1310                 | to be <b>personally</b><br>funded/fabricated!                                                     |
| 2 | Spare Parts                               | Camber links, rode ends, cv axles,<br>hubs                     | \$320                  |                                                                                                   |
| 3 | Competition<br>Expenses<br>Front Sub-team | Registration, travel (hotel rooms, vehicle rentals, gas, etc.) | \$1,125                |                                                                                                   |
| 4 | Contingency (5%)                          | Unpredicted Expenses                                           | \$138                  | NORTHERN                                                                                          |
|   |                                           | Total                                                          | \$2893                 | ARIZONA                                                                                           |



# **Drivetrain Team**

Henry Van Zuyle, Donovan Parker, Ryan Fitzpatrick, Jarett Berger



-40

# **Design Description - ECVT**



Henry Van Zuyle | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

# **Design Description - ECVT**



Henry Van Zuyle | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

# **Design Description - ECVT**



Henry Van Zuyle | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023



Donovan | SAE Baja '24 | F23toSp24\_09 | November 6th,

NORTHERN

UNIVERSITY



2023



Donovan | SAE Baja '24 | F23toSp24\_09 | November 6th,

NORTHERN

UNIVERSITY



Donovan | SAE Baja '24 | F23toSp24\_09 | November 6th,

2023

NORTHERN

UNIVERSITY

# **Design Description – CV Cup**



Jarett | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

# **Design Requirements - QFD**

|    |                                    |                 |               |                      |                    | <u></u>     | putate                                  | as are                  | ni gen                          | Ow.      |      |            |       |          |
|----|------------------------------------|-----------------|---------------|----------------------|--------------------|-------------|-----------------------------------------|-------------------------|---------------------------------|----------|------|------------|-------|----------|
| 1  | top speed                          |                 | 1             |                      |                    |             |                                         |                         |                                 |          |      |            |       |          |
| 2  | drivetrain efficiency              |                 | $\rightarrow$ | 1                    | -                  |             |                                         |                         |                                 |          |      |            |       |          |
| 3  | torque to the wheels               |                 | 6             |                      |                    |             |                                         |                         |                                 | Legend   | U    |            |       |          |
| 4  | service life                       | i i             |               |                      |                    | 1           |                                         |                         |                                 | A        | Corr | nell 202   | 3     |          |
| 5  | total system weight (whout engine) |                 |               | 3                    |                    | Ĵ           | 1                                       | -                       |                                 | в        | NAU  | 2021#      | 21    |          |
| 6  | total transmission range           |                 |               | 6                    |                    |             |                                         | 1                       |                                 | С        | NAU  | 2023 #     | 74    |          |
| 7  | Meets HROE Guard specifications    |                 | , S           |                      | S                  | §3          | -9                                      | ¥                       | ~                               | 1        |      | 1. 1       |       |          |
|    |                                    |                 |               | Tec                  | nical              | Req         | uirem                                   | ents                    |                                 | Custo    | omer | Opini      | on Su | Irve     |
|    |                                    | ustomer Weights | paads du      | rivetrain efficiency | rque to the wheels | ervice life | ital system weight (w/out engine)       | ttal transmission range | leets HR0E Guard specifications | Poor     |      | Acceptable |       | Good     |
| -  | Customer Needs                     | 0               | <u>۽</u>      | 4<br>C               | 5                  | ŭ           | 2                                       | 4                       | N                               | 7        | 64   | m          | *     | 50       |
| 1  | tast                               | 5               | 3             | 6                    | 6                  | 3           | 6                                       | 6                       | 1                               | U C      |      | 200        | в     | <u>A</u> |
| 4  | Figh errectency                    | 3               | 3             | 3                    | 0                  | 0           | 3                                       | 0                       | 3                               | <u> </u> |      |            |       |          |
| 3  | Past acceleration                  | 2               | 3             | 0                    | 3                  | 3           | 3                                       | 3                       | 1                               | U.       |      | B<br>AC    |       |          |
| 2  | durable                            |                 | 1             | 0                    | -                  | 3           | 1                                       | 4                       | 3                               | 0        |      | AC         | -     | <u>в</u> |
| 2  | can crawl and go fast              | 4               | 3             | 6                    | 9                  | 3           | 3                                       | 9                       | 1                               | U        |      |            | в     | <u>A</u> |
| 6  | NEEDS TO BE SAFE                   | 5               | 1             | 1                    | 1                  | 6           | 1                                       | 1                       | 9                               | 9        |      | <u> </u>   | в     | <u>A</u> |
| 4  | Aesthetically Pleasing             | 3               | 9             | 1                    | 9                  | 3           | . a                                     | э                       | 3                               |          | ್ಟ   |            | A     | В        |
| 8  |                                    | <u>.</u>        |               |                      |                    | 2 1         |                                         |                         |                                 |          |      |            |       |          |
| 9  |                                    |                 | 1             | -                    |                    |             | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | - 2                     |                                 | 1        |      |            |       |          |
| 10 |                                    |                 |               |                      |                    |             |                                         |                         |                                 |          |      |            |       |          |
| 11 |                                    |                 |               |                      | 3                  |             | -                                       |                         |                                 |          |      | -          |       | _        |
|    | Technical Requ                     | uirement Units  | НЫМ           | Unitles              | Lbf/Ft             | hours       | lbs                                     | Unitless                | NIA                             |          |      |            |       |          |
|    | Technical Require                  | ement Targets   | 40            | 80                   | 400                | 1000        | 60                                      | 01:04.5                 | NIA                             |          |      |            |       |          |
|    | Absolute Technic                   | al Importance   | 56            | 25                   | 62                 | 8           | 29                                      | 65                      | 9                               |          |      |            |       |          |
|    |                                    |                 |               |                      |                    |             |                                         |                         | 60                              |          |      |            |       |          |

ER to ER

#### **Positive Correlation**

 Drivetrain efficiency & Torque to the wheels

#### **Inverse Correlation**

 Total system weight & service life

### CR to ER

#### **Strong Correlations**

- High efficiency
- Fast acceleration
- o Safety

# **Engineering Calculations - Henry**



Results generated from SolidWorks

- Conducted FEA on Fixed Secondary Sheave
- Lasts 10^9 cycles at given stress



# **Engineering Calculations - Ryan**





#### max\_shear\_shaftB =

1.4440e+03

max bending shaftB =

148.4494

Torque shaftB =

1.3725e+03

1.0429

fos B =

max bending location B = 0.1478

Results generated from MATLAB

- Constructed a MATLAB  $\cap$ script to calculate and plot shear and bending moments on each shaft.
- FOS,A = 1.0921 Ο
- FOS,B = 1.0429Ο
- Getting the FOS for each 0 shaft critical location as close to 1 as possible minimizes material and decreases weight.

IORTH JNIVERSITY

# Engineering Calculations – Jarett



Results generated from SolidWorks

- Conducted FEA on inner groove for ball bearings
- Factor of Safety of 61.5941
- Decrease the wall thickness to save weight

Jarett | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

### **Engineering Calculations -Donovan**

| 1 | "p"                | = 0.314961in          | 0.314961in  |  |
|---|--------------------|-----------------------|-------------|--|
| 2 | "PD"               | = 3.14961in           | 3.149610in  |  |
| 3 | "n"                | = ( "PD" * pi ) / "p" | 31.415927in |  |
| 4 | "d"                | = 3in                 | 3.000000in  |  |
| 5 | "w"                | = 0.7874in            | 0.787400in  |  |
| 6 | "D1@Sketch1"       | = "d"                 | 3in         |  |
| 7 | "D1@Boss-Extrude1" | = "w"                 | 0.7874in    |  |
| 8 | "D1@Sketch3"       | = "d"                 | 3in         |  |
| 9 | "D1@Sketch7"       | = "d"                 | 3in         |  |
|   |                    |                       |             |  |

| Design <sup>-</sup> | Table 1    | for: Offici      | ey Design  |                |                |                                                                 |
|---------------------|------------|------------------|------------|----------------|----------------|-----------------------------------------------------------------|
|                     | D1@Sketch1 | D1@Boss-Extrude1 | D1@Sketch2 | D3@CirPattern1 | D1@CirPattern1 | \$LIBRARY:MATERIAL@Offici<br>al Pulley Design                   |
| 3in Clutch Pullev   | "b"=       | "W"=             | 1.5        | 360            | 30             | SOLIDWORKS<br>Materials:AISI<br>4130 Steel,<br>annealed at 865C |
| 4 5 in the v        | 4.5        | 0.7874           | 2.25       | 360            | 46             | SOLIDWORKS<br>Materials:AISI<br>4130 Steel,<br>annealed at 865C |





Results generated from SolidWorks  Takes belt pitch to generate a pulley tooth number to match belt specifications.

 Equations and Table work in tandem to for both configuration designs.

# **Design Validation - ECVT**

| Part #<br>and Functions              | Potential<br>Failure Mode           | Potential Effect(s) of<br>Failure                                                        | Potential Causes<br>and Mechanisms of<br>Failure                                             | RPN | Recommended Action                                                                                               |   | Failures                                                                                                                  |
|--------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------|
| Electronics<br>Computation<br>Module | Physical damage to computers        | Incorrect Control Signals,<br>damage to CVT primary<br>sheaves due to overtravel         | Debris ingress, mount<br>failure, vibration fatigue<br>of connections                        | 84  | ensure computation module<br>housing is sealed to debris,<br>mount housing with<br>vibration dampening<br>mounts | 0 | Computation errors cause<br>erratic motor movement and<br>component damage<br>Physical fatigue failure of                 |
| Electronics<br>Motion Module         | Encoder loss of position            | Erratic CVT movement,<br>damage to CVT primary<br>sheaves due to overtravel              | Extreme vibration, high<br>electrical interference,<br>lose cable connections                | 112 | Ensure tight cable<br>connections, route high<br>amperage wires away from<br>signal wires                        |   | Vitigation                                                                                                                |
| Primary Sheave<br>Assembly           | Main Shaft fatigue<br>failure       | Loss of power transmission,<br>damage to control motor,<br>damage to belt                | Lack of maintenance and<br>inspection, higher than<br>anticipated loads, wear<br>from debris | 30  | Change main shaft to steel,<br>properly inspect<br>components for wear and<br>replace within service life        | 0 | Thoroughly debug code and<br>harden computation electronics<br>against environmental factors<br>Replace components before |
| Secondary<br>Sheave Assembly         | Fatigue failure of<br>cam followers | Reduced max torque<br>transfer, increased belt<br>temperature leading to belt<br>failure | Poor structural design,<br>repeated high rpm CVT<br>engagements from<br>stopped              | 30  | Inspect secondary moving<br>sheave before use, replace<br>within service life                                    | 0 | service life is reached, design<br>components to last duration of<br>testing and competition                              |
| Support<br>Structure                 | Impact failure                      | catastrophic system failure,<br>damage to all components                                 | Massive crash, fatigue<br>stress build over time<br>leading to weakened<br>structure         | 20  | Don't crash                                                                                                      |   | NORTHERN                                                                                                                  |

UNIVERSITY

## **Design Validation – Rear Gearbox**

| Part #<br>and Functions                    | Potential<br>Failure Mode                    | Potential Effect(s) of<br>Failure                                          | Potential Effect(s) of<br>Failure Failure Failure                                   |     | Recommended Action                                                           |
|--------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------|
| Brake<br>Components                        | Fatigue Failure,<br>Component<br>Destruction | Brake Failure                                                              | Brake line severed by terrain, excessive use                                        | 40  | Protect brake components                                                     |
| Gearbox Seals Fatigue                      |                                              | Transmission Fluid Leak                                                    | Overheating the gearbox, bearing failure                                            | 96  | Use seals with a high FOS to mitigate failure risk                           |
| Shaft Bearings High-Cycle Failure          |                                              | Bearing Lock, Increased<br>Friction Resistance                             | Cycle exceed design life                                                            | 168 | Use oversized ball bearings                                                  |
| Gears Contact Stresses,<br>Fatigue Failure |                                              | Teeth Wear/Striping, Higher<br>Inefficiency, Failure to<br>Transmit Torque | Material failure due to<br>overuse, overheating, or<br>unforeseen stress            | 40  | Use heat treated 4140 steel for optimal strength                             |
| Input Shaft                                | Fatigue Failure                              | Material Yielding                                                          | Unforeseen stresses causing material failure                                        | 20  | Use heat treated 4140 steel<br>for optimal strength                          |
| Intermediate Shaft Fatigue Failure         |                                              | Material Yielding                                                          | Unforeseen stresses causing material failure                                        | 60  | Use heat treated 4140 steel<br>for optimal strength                          |
| Output Gear with<br>Integrated CV<br>Cups  | Fatigue Failure                              | Material Yielding                                                          | CV cup failure or gear<br>teeth failure due to<br>overuse or unforeseen<br>stresses | 20  | Use heat treated 4140 steel<br>for optimal strength and<br>employ a high FOS |

### Failures

- Fatigue Failure in gears, shafts, or CV cups.
- Exceeding life rating on bearings and seals.

### Mitigation

- Use heat treated 4140
   Steel for higher material strength.
- Use high life gearbox components.



# **Design Validation – Front Gearbox**

| Part #<br>and Functions           | Potential<br>Failure Mode                                                                            | Potential Effect(s) of<br>Failure       | al Effect(s) of<br>Failure Failure Failure |                             | Recommended Action                     |
|-----------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| CV Cup                            | Abrasive Wear                                                                                        | Erratic Operation, Poor<br>Appearance   | Impact Loading,<br>Overstressing           | 75                          | Increase material wall<br>thickness    |
| Sprag High-Cycle Fatigue          |                                                                                                      | No Longer Operational,<br>Flying Debris | Impact Loading,<br>Overstressing           | 30                          | Use oversized sprag clutch             |
| Gear Bearings                     | BearingsHigh-Cycle<br>FatigueNo Longer Operational,<br>Flying DebrisImpact Loading,<br>Overstressing |                                         | 45                                         | Use oversized ball bearings |                                        |
| Output Gear                       | <b>Put Gear</b> Contact Fatigue Erratic Operation, Flying Overstressing Overstressing                |                                         | Overstressing                              | 60                          | Increase hardness by heat treatment    |
| Input Gear                        | Contact Fatigue                                                                                      | Erratic Operation, Flying<br>Debris     | Overstressing                              | 60                          | Increase hardness by heat<br>treatment |
| Output Shaft                      | High-Cycle<br>Fatigue                                                                                | No Longer Operational,<br>Flying Debris | Assembly Errors,<br>Overstressing          | 30                          | Increase hardness by heat<br>treatment |
| Input Shaft High-Cycle<br>Fatigue |                                                                                                      | No Longer Operational,<br>Flying Debris | Assembly Errors,<br>Overstressing          | 30                          | Increase hardness by heat<br>treatment |

### **Failures**

- CV cup fails due to overstressing
- Fatigue failure for output/input gears

### Mitigation

- Heat treatment
- Material selection
- Use oversized
   bearings



## **Design Validation - 4 Wheel Drive**

| Part #<br>and Functions          | Potential<br>Failure Mode | Potential Effect(s) of<br>Failure              | Potential Causes<br>and Mechanisms of<br>Failure | RPN | Recommended Action                |
|----------------------------------|---------------------------|------------------------------------------------|--------------------------------------------------|-----|-----------------------------------|
| Driving Clutch                   | Material Failure          | Non-Operational                                | Tooth Shearing                                   | 40  | Engage while off the throttle     |
| Driven Clutch                    | Material Failure          | Non-Operational                                | Tooth Shearing                                   | 10  | Engage while off the throttle     |
| Rear End Pulley                  | High Force Failure        | Non-use of 4 Wheel Drive                       | Vheel Drive Driving side clutch warps material   |     | Engage while off the throttle     |
| Front End Pulley                 | Load Failure              | Non-use of 4 Wheel Drive                       | Belt load moves Circlip                          | 120 | Use heavy duty clip               |
| Timing Belt                      | High-Cycle Failure        | Non-use of 4 Wheel Drive                       | Exceed Tension Rating                            | 24  | Tension to specifications         |
| Rear End Shaft Fatigue Failure   |                           | Clutch will not be able to engage              | Assembly Error                                   | 7   | Lock down all non-moving<br>parts |
| Shaft Bearing High-Cycle Failure |                           | Bearing Lock, Increased<br>Friction Resistance | Cycle exceed design life                         | 168 | Use oversized ball bearings       |

### Failures

- High Force and
   Load Failure
- $\circ~$  Cease 4WD use

### Mitigation

 Limit unnecessary force on clutch



# **Drivetrain Budget**

|   | Category                                       | Relevant Items                                                                  | Approximated Cost                                                          |                                                                                                                                             |
|---|------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Vehicle Expenses                               | Motor<br>Front Gearbox<br>Rear Gearbox<br>ECVT<br>4WD<br><b>Estimated Total</b> | \$900<br>\$794<br>\$1,018.55<br>\$2,310<br>\$1,336.57<br><b>\$6,359.12</b> | No Expenses Accumulated<br>All prototyping used<br>existing shop materials<br>or was cheap enough<br>to be personally<br>funded/fabricated! |
| 2 | Spare Parts                                    | Gears, CV Axles, Hardware                                                       | \$500                                                                      |                                                                                                                                             |
| 3 | Competition<br>Expenses<br>Drivetrain Sub-team | Registration, travel (hotel rooms, vehicle rentals, gas, etc.)                  | \$1,125                                                                    |                                                                                                                                             |
| 4 | Contingency (5%)                               | Unpredicted Expenses                                                            | \$300                                                                      |                                                                                                                                             |
|   |                                                | Total                                                                           | \$8,284.12                                                                 | ARIZONA<br>UNIVERSITY                                                                                                                       |

Jarett | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023



# **Frame Team**

Cooper Williams, Gabriel Rabanal, Antonio Sagaral





### Sub System Note:

- Frame design team has different specifications for sub systems
  - Mounting Tabs
  - Side Paneling
  - Firewall
  - Driver Safety Equipment
- Many of these systems will be integrated later in the design stage

NORTHERN

JNIVERSITY



# **Design Requirements**

| System QED                 |         |                   | Pr              | oject:<br>Date:         | <b>Baja</b><br>9/14/   | <b>24 F</b>   | rame                       |        |       |              |               |             |
|----------------------------|---------|-------------------|-----------------|-------------------------|------------------------|---------------|----------------------------|--------|-------|--------------|---------------|-------------|
|                            |         | -                 |                 |                         | 0/11/                  | 20            |                            |        |       |              |               |             |
| Decrease                   | weight  |                   |                 |                         |                        |               |                            |        |       |              |               |             |
| Decrease length o          | f body  |                   | 6               |                         |                        |               |                            | Legen  | b     |              |               |             |
| Decrease width o           | f body  |                   | 3               |                         | $\sim$                 |               |                            | A      | ETS   | Baja         |               |             |
| Decrease                   | e Cost  |                   | -9              | 3                       | 3                      |               |                            | В      | SAE   | Beav         | er rac        | cing        |
| Increase strength of       | frame   |                   |                 | 6                       | 6                      | -3            |                            | С      | Corn  | iell Ba      | <u>ija Ra</u> | cing        |
|                            |         |                   | Тес             | hnica                   | l Requ                 | iireme        | nts                        | Cus    | tomer | Opinic       | n Sur         | vey         |
| Customer                   | Veeds   | Customer Weights  | Decrease weight | Decrease length of body | Decrease width of body | Decrease Cost | Increase strength of frame | 1 Poor | 2     | 3 Acceptable | 4             | 5 Excellent |
|                            | Rigid   | 3                 | 1               | 6                       | 3                      | 3             | 9                          |        |       |              | ÀBC           |             |
| Easy to Manuf              | acture  | 3                 | 3               | 3                       | 1                      | 3             | 3                          |        |       | В            | AC            |             |
| Maneuv                     | erable  | 2                 | 3               | 9                       | 9                      | 1             | 3                          |        |       |              |               | ABC         |
| Aesthetically Ple          | easing  | 1                 | 3               | 1                       | 3                      | 3             | 1                          |        |       | С            | В             | А           |
| D                          | urable  | 2                 | 3               | 1                       | 3                      | 3             | 9                          |        |       | AC           | В             |             |
| Satisfy SAE Baja Frame Gui | idlines | 4                 | 3               | 1                       | 6                      | 3             | 6                          |        |       |              |               | ABC         |
|                            | Stable  | 3                 | 1               | 3                       | 9                      | 1             | 6                          |        |       |              | С             | AB          |
|                            | Fast    | 3                 | 6               | 3                       | 3                      | 6             | 3                          |        |       |              | BC            | Α           |
| Light                      | weight  | 4                 | 9               | 6                       | 3                      | 9             | 6                          |        |       |              | ABC           |             |
| Affo                       | rdable  | 3                 | 9               | 6                       | 3                      | 9             | 6                          |        |       | ABC          |               |             |
| Techr                      | nical R | equirement Units  | lbs             | Ë                       | i                      | \$            | klb*in                     |        |       |              |               |             |
| Technic                    | al Req  | uirement Targets  | 60              | 64                      | 6                      | 800           | 3.513                      |        |       |              |               |             |
| Absolut                    | e Tech  | inical Importance | 123             | 112                     | 120                    | 125           | 154                        |        |       |              |               |             |
| Relativ                    | e Tech  | nical Importance  | в               | 5                       | 4                      | 2             | -                          |        |       |              |               |             |
|                            |         |                   |                 |                         |                        |               |                            |        |       |              |               |             |

### **ER to ER**

#### **Positive Correlation**

 Decreased Length/width & Increased Strength

#### **Inverse Correlation**

Decreased weight & Decreased cost

### **CR to ER**

#### **Positive Correlation**

- Decreased Width/Length & Maneuverability
- Increased Strength & Durability

#### **Inverse Correlation**

- Decreased Weight &
  - Affordability



Cooper | SAE Baja '24 | F23toSp24\_09 | November 6th,

# **Design Requirements - ERs**

| CR           | ER                      | Parameter            | Target       | Current<br>Design | Acceptable?  |
|--------------|-------------------------|----------------------|--------------|-------------------|--------------|
| Lightweight  | Decrease Weight         | Roll Cage Weight     | 60 lbs       | 56 lbs            | $\checkmark$ |
| Maneuverable | Decrease Body Length    | Wheelbase            | <64"         | 62.8"             | $\checkmark$ |
| Stable       | Decrease Body Width     | Suspension Tab Width | <9"          | 8″                | $\checkmark$ |
| Affordable   | Decrease Cost           | Cost                 | \$800        | \$496             | $\checkmark$ |
| Durable      | Increase Frame Strength | Bending Strength     | 3.513 klb*in | 4.301 klb*in      | $\checkmark$ |



NORTHERN

ARIZONA

# **Engineering Calculations-Cooper**

#### Side Impact Member Deflection

**Governing Equations:** Assumptions: **Relevant Values:** Simply Supported  $y_{AB} = \frac{Fbx}{6EII}(x^2 + b^2 - l^2)$ D = 1.00 in Beam with an Intermediate Load d = 0.93 in  $a = \frac{1}{2}l, b = \frac{1}{2}l$ *L*<sub>1</sub> = 22.977 in  $y_{BC} = \frac{Fa(l-x)}{6FII}(x^2 + a^2 - 2lx)$ *L*<sub>2</sub> = 12.049 in x = 0.5l $L_3 = 14.501$  in  $F = 300 \, \text{lbf}$ E = 29000 kpsi  $I_y = I_x = \frac{\pi}{64} (D^4 - d^4)$ **Maximum Deflection** per Member  $\delta_1$ 0.0212 in  $\delta_2$ 0.0030 in  $R_1$  $\delta_3$ 0.0053 in NORTHERN UNIVERSITY

# **Engineering Calculations - Antonio**

#### Front Shock Support Member

#### **Governing Equations**





| Results          |  |
|------------------|--|
| Necessary values |  |
| F = 525 lbf      |  |
| a = 11 in        |  |
| b = 3 in         |  |
| E = 29,000 ksi   |  |
| I = 0.0426       |  |
| L = 13.6 in      |  |



 $\delta_{max} = 0.0236in$ 

IORT

JNIVERSITY

# **Engineering Calculations - Gabe**

#### **Rear Shock Mount Tab**



Assumptions: F = 550 lbf applied evenly through mounting hardware

Minimum factor of safety in part of 18 shows extreme safety in tab design.

Assuming proper manufacturing of tab, failure would likely occur due to incorrect assembly in the welding stage.

IORTH

JNIVERSITY

# **Design Validation-Members**

| Part #<br>and Functions          | Potential<br>Failure Mode                                 | Potential Effect(s) of Failure                         | Potential Causes<br>and Mechanisms of<br>Failure            | RPN | Recommended Action                                         | Failures                                                                                              |
|----------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-----|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Bumper                           | Impact Fracture,<br>Impact Deformation,<br>Impact Fatigue | No Longer Operational, Poor<br>Appearance              | Assembly Errors, Impact<br>Loading, Manufacturing<br>Defect | 18  | Ensure Proper Assembly                                     | <ul> <li>High Stress Geometry</li> <li>Welded Points</li> </ul>                                       |
| Roll Hoop<br>Overhead<br>Members | Impact Fracture,<br>Impact Deformation,<br>Impact Fatigue | No Longer Operational, Poor<br>Appearance              | Assembly Errors, Impact<br>Loading, Manufacturing<br>Defect | 10  | Ensure Proper Assembly                                     |                                                                                                       |
| Side Impact<br>Members           | Impact Fracture,<br>Impact Deformation,<br>Impact Fatigue | No Longer Operational, Poor<br>Appearance              | Assembly Errors, Impact<br>Loading, Manufacturing<br>Defect | 10  | Ensure Proper Assembly,<br>Optimize Supportive<br>Geometry | • Certify Welders                                                                                     |
| Seat Mount                       | Impact Fracture,<br>Impact Deformation,<br>Impact Fatigue | No Longer Operational, Poor<br>Appearance              | Assembly Errors, Impact<br>Loading, Manufacturing<br>Defect | 16  | Ensure Proper Assembly,<br>Limit Impact Opportunities      | <ul> <li>Verify Weld integrity after<br/>installation</li> <li>Increase Material Thickness</li> </ul> |
| Steering<br>Column Mount         | Impact Deformation,<br>Impact Fatigue                     | Erratic Operation                                      | Assembly Errors, Impact<br>Loading, Manufacturing<br>Defect | 12  | Ensure Proper Assembly,<br>Optimize Geometry               |                                                                                                       |
| Seat                             | Impact Fracture,<br>Impact Wear                           | Safety Hazard, No Longer<br>Operational, Uncomfortable | Manufacturing Defect,<br>Impact Loading                     | 24  | Thicken material, Avoid High<br>Stress Geometry            | NORTHERN<br>ARIZONA                                                                                   |

## Design Validation-Rear Shock Mounts

| Part #<br>and Functions  | Potential<br>Failure Mode                                  | Potential Effect(s) of<br>Failure                           | Potential Causes<br>and Mechanisms of<br>Failure        | RPN | Recommended Action                                 |
|--------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----|----------------------------------------------------|
| Rear Shock Tab           | Impact Fatigue,<br>Impact Wear,<br>Surface Fatigue<br>Wear | Poor Handling, No<br>Longer Operational, Poor<br>Appearance | Incorrect Assembly,<br>Overstressing                    | 64  | Ensure Proper<br>Assembly, Use Thicker<br>Material |
| Trailing Link Tab        | Impact Fatigue,<br>Impact Wear,<br>Surface Fatigue<br>Wear | Poor Handling, No<br>Longer Operational, Poor<br>Appearance | Incorrect Assembly,<br>Overstressing                    | 56  | Ensure Proper<br>Assembly, Use Thicker<br>Material |
| Upper Camber<br>Link Tab | Impact Fatigue,<br>Impact Wear,<br>Surface Fatigue<br>Wear | Poor Handling, No<br>Longer Operational, Poor<br>Appearance | Incorrect Assembly,<br>Overstressing                    | 32  | Ensure Proper<br>Assembly, Use Thicker<br>Material |
| Lowe Camber<br>Link Tab  | Impact Fatigue,<br>Impact Wear,<br>Surface Fatigue<br>Wear | Poor Handling, No<br>Longer Operational, Poor<br>Appearance | Incorrect Assembly,<br>Overstressing,<br>Impact Loading | 32  | Ensure Proper<br>Assembly, Use Thicker<br>Material |

### Failures

- Welded Points
- Tab Mount Locations
- Mounting Hardware

### Mitigation

- Certify Welders
- Verify Welds after installation
- $\circ \ \, \text{Increase Material} \\$ 
  - Thickness

#### RPN Note:

High RPN values for shock and trailing link tabs are due primarily to high values of severity and detection. Failure at this point in the vehicle is highly unlikely but could be hazardous

JNIVERSITY

## Design Validation-Front Shock Mounts

| Part #<br>and Functions | Potential<br>Failure Mode                                      | Potential Effect(s) of Failure                                       | Potential Causes<br>and Mechanisms of<br>Failure | RPN | Recommended Action                                                                                     |
|-------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------|
| Front Shock Tab         | Impact Fatigue,<br>Loop around bolt<br>Failing,<br>Deformation | Non-functional Vehicle,<br>Incorrect front geometry<br>Poor handling | Poor welds,<br>Incorrect placement               | 45  | Verify Welds,<br>Ensure proper placement<br>before final welds occur                                   |
| UCA Tabs                | Impact Fatigue,<br>Loop around<br>bolt Failing,<br>Deformation | Non-functional Vehicle,<br>Incorrect front geometry<br>Poor handling | Poor welds,<br>Incorrect placement               | 30  | Verify Welds,<br>Ensure proper<br>placement before final welds<br>occur,<br>In line with other UCA tab |
| LCA Tabs                | Impact Fatigue,<br>Loop<br>around bolt Failing,<br>Deformation | Non-functional Vehicle,<br>Incorrect front geometry<br>Poor handling | Poor welds,<br>Incorrect placement               | 30  | Verify Welds,<br>Ensure<br>proper placement before<br>final welds occur,<br>In line with other UCA tab |

# **Schedule**

| Task                                                                                                                                                                                                                                  | Date                         |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|
| Secondary Member Material Allocation* - Supplier in Phoenix                                                                                                                                                                           | 11/12/2023*                  |                 |
| Jig Production:<br>-Determine jigging system and effective production<br>method                                                                                                                                                       | 11/13/2023                   |                 |
| Prototype Demo and Updates:<br>-Marking SAE BAJA Rule violations, Comparing to<br>current frame                                                                                                                                       | 11/17/2023                   |                 |
| Final CAD and BOM                                                                                                                                                                                                                     | 11/24/23                     |                 |
| <ul> <li>Tacked Frame</li> <li>Measure members</li> <li>Member lengths and angles to fit jig and match CAD model</li> <li>Verify validity of frame</li> <li>Tack weld primary members</li> <li>Tack weld secondary members</li> </ul> | 11/30/2023                   | IRTHERN         |
| Cooper   SAE Baja '24   F                                                                                                                                                                                                             | F23toSp24_09   November 6th, | NIVERSITY<br>69 |

# **Frame Budget**

|   | Category                                  | Relevant Items                                                              | Approximated Cost                     |  |
|---|-------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|--|
| 1 | Vehicle Expenses                          | Frame Material<br>Paneling and Carbon Layup<br>Safety Equipment<br>Hardware | \$400<br>\$0<br>\$46<br>\$50<br>\$496 |  |
| 2 | Spare Parts                               | Welding supplies, Hardware,<br>Tab Materials, Tubing                        | \$200                                 |  |
| 3 | Competition<br>Expenses<br>Frame Sub-team | Registration, travel<br>(hotel rooms, vehicle<br>rentals, gas, etc.)        | \$1,125                               |  |
| 4 | Contingency (5%)                          | Unpredicted Expenses                                                        | \$100                                 |  |
|   |                                           | Total                                                                       | \$1921                                |  |

APIZO

UNIVERSITY

ERN

# **Updated CAD – Whole Car**

Gabe | SAE Baja '24 | F23toSp24\_09 | November 6th, 2023

NORTHERN ARIZONA UNIVERSITY

# Bibliography

"Using high strength bolts for structural bolting," The Federal Group USA,

https://www.tfgusa.com/high-strength-bolts-forstructural-

bolting/#:~:text=A%20grade%208%20bolt%20is,to% 20the%20SAE%20grade%205. (accessed Oct. 31, 2023).

[2]

[1]

diblazing (Mechanical) et al., "Find shear strength from tensile strength," Engineering forums for professionals, https://www.engtips.com/viewthread.cfm?qid=69837#:~:text=A%20rul e%20of%20thumb%20for%20engineering%20alloys% 20is%20ultimate%20shear,can%20range%20up%20to %20~%200.8. (accessed Oct. 31, 2023).  [3] "Bolt shear strength - bearing, tearout, and shear load capacity calculations," YouTube, https://www.youtube.com/watch?v=8KAEUcdyp6 8 (accessed Oct. 31, 2023).