Ankle ExoSkeleton

BY: DIEGO AVILA, EMMA DE KORTE, TRE GREEN

Project Description

-Partnered with Zachary Lerner -Partnered with NAU Biomechatronics -Develop Ankle Exoskeleton -Focus on structure of system (not motor) -Aid in walking motion -Commonly going to be used for Cerebral Palsy

Background and Benchmarking

There are currently multiple ankle exoskeleton products being developed

These Three Below are products that we believe solve the current problem of a faulty transmission system between the ankle and the actuating system.

Technaid Robotic Ankle H3

This system use a wave gear system to actuate the ankle movement and uses a 22 V battery

Figure 1: Diagram of the Technaid Robotic Ankle H3

The Rewalk Restore Soft Robotic Exosuit

Uses a Bowden cable system with a gear driven actuating system

Figure 2: Diagram of the Rewalk Restore Soft Robotic Exosuit

Untethered Robotic Ankle Exoskeleton

Also use a Bowden cable actuating system

Figure 3: Diagram of the Untethered Robotic Ankle Exoskeleton

Customer Requirements

Lightweight
Easly put on and taken off
Durable
Economical
Low profile

Engineering Requirements

Given budget is \$4000.00

Range of motion for foot should be at least 45° in either direction~standard range of motion when walking

Weigh <1kg (ankle piece)
Cannot extrude from the body more than 10cm
Lifetime of 100,000 steps

QFD

									Α	Technaid Eobo	tic Ankle H3	
1 Decrease Weight		1						В	Rewalk Restore	Soft robotic Exos		
2 Increase Durability		-						С	Untelthered Ro	botic Ankle Exosl	ł	
3	3 Decrease Timing		0	(-)		_						
4 Decrease Cost of Each Leg		+		+								
5	Decrease Protrusion From Body		++	0	0	0						
3		Technical Requirements				Customer Opinion Survey						
	Customer Needs	Customer Weights	Decrease Wei <u>c</u> ht	Increase Durability	Descrease Timing	Decrease Cost of Each Leg	Decrease Protrusion from Body	1 Poor	ä	8 Acceptable		5 Excellent
1	Lightweight	3	5	3	3	3	3	А				BC
2	Easy to take on and off	4	3	1	5	3	3		BC		А	
3	Durable	4	2	5	1	2	1			ABC		
4	Cost Effective	5	4	4	1	5	1					
5	Small in size, close to body	3	5	2	3	2	5	А	В		С	
Technical Requirement Units		kg	steps	min	dollars	cm			()		
8	Technical Requirement Targets		<1	100,000	<1	<2000	<10	Į.			(5
Absolute Lechnical Importance			19	15	13	15	13	ł				
Relative Technical Importance		1	2	3	2	3	1					

Figure 4: House of Quality for Robotic Exoskeleton

Literature Review of Biomechanics of the foot

- Dynamics HIBBELER, R. C. (2015). Engineering mechanics: Dynamics. PRENTICE HALL.
- Uchida, Thomas K. Biomechanics of Movement: The Science of Sports, Robotics, and Rehabilitation. MIT Press, 2021.
- Brockett, Claire L, and Graham J Chapman. "Biomechanics of the ankle." Orthopaedics and trauma vol. 30,3 (2016): 232-238. doi:10.1016/j.mporth.2016.04.015 (Muscles involved with foot movement)
- Chan, Carl W, and Andrew Rudins. "Foot Biomechanics During Walking and Running." Mayo Clinic Proceedings, 5th ed., vol. 69, 1994, pp. 448–461. (Foot mechanics when walking)
- ▶ Kharb, Ashutosh, et al. A REVIEW OF GAIT CYCLE AND ITS PARAMETERS , vol. 13, July 2011,
- "What Is Cerebral Palsy?" Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 2 May 2022, <u>www.cdc.gov/ncbddd/cp/facts.html</u>.
- ▶ Jung, Taeyou, et al. "Biomechanical and Perceived Differences between Overground and Treadmill Walking in Children with Cerebral Palsy." Gait & Posture, 2016, pp. 1–6.

Literature Review of Gear System

- BDYNAS. (2020). SHIGLEY'S MECHANICAL ENGINEERING DESIGN, 11TH EDITION, SI UNITS (11th ed.). MCGRAW-HILL EDUCATION (AS.
- Cammit, Joel (2013). Exploring Robotics, <u>https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=http://www.sci.brooklyn.cuny.edu/~kammet/syllabus-spr13.pdf&ved=2ahUKEwjb3pe3x7WBAx</u>
- "Gear Train: Gear Ratios, Torque, and Speed Calculations". <u>https://www.smlease.com/entries/mechanism/gear-train-gear-ratio-torque-and-speed-calculation/</u>
- Groover, M. P. (2021). Fundamentals of modern manufacturing: materials, processes, and systems. Wiley.
- Lerner, Zachary (2022). Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. Northern Arizona University. <u>https://doi.org/10.1186/s12984-021-00954-9</u>.
- Lewsley, Fred (2013). Functioning 'mechanical gears' seen in nature for the first time. University of Cambridge. <u>https://www.cam.ac.uk/research/news/functioning-mechanical-gears-seen-in-nature-for-the-first-time</u>

Literature for Materials of Exoskeleton

- [1] A. I. Alateyah et al., "Design optimization of a 4-bar exoskeleton with natural trajectories using unique gait-based synthesis approach," De Gruyter, <u>https://www.degruyter.com/document/doi/10.1515/eng-2022-0405/html?lang=en</u> (accessed Sep. 19, 2023).
 - > Provides more information on exoskeletons and different materials to build the devices out of.
- [2] X. Wang, S. Guo, B. Qu, M. Song, and H. Qu, "Design of a Passive Gait-based Ankle-foot Exoskeleton with Self-adaptive Capability - Chinese Journal of Mechanical Engineering," SpringerOpen, <u>https://cjme.springeropen.com/articles/10.1186/s10033-020-00465-z</u> (accessed Sep. 19, 2023).
 - Has a good schematic on how a motor assembly has worked for published designs.
- [3] Orekhov, Greg & Fang, Ying & Cuddeback, Chance & Lerner, Zachary. (2021). Usability and performance validation of an ultra-lightweight and versatile unterthered robotic ankle exoskeleton. Journal of NeuroEngineering and Rehabilitation. 18. 10.1186/s12984-021-00954-9.
 - This publication is a previous one from Dr. Lerner, provided a schematic of the motor assembly the client has used in the past and materials used.
- [14] T. Philpot and J. S. Thomas, Mechanics of Materials: An Integrated Learning System. Estats Units d'América: Wiley, 2020.
 - Used to learn about different material properties
- [15] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction. Milton, QLD: John Wiley and Sons Australia, Ltd, 2021.
 - Used for equations to calculate the thickness needed
- Online sources used for material properties can be found on slide 23

Calculating Torque of Achilles Tendon

Using this equation
 -W*d1cos(theta)+Fa*d2cos(Theta2)=0
 W=Weight/2
 D1= Distance from the Balls of feet to the Tibia

Fa= Force of Achilles

D2= Distance from tibia to Achillies Theta= angle of elevation of the heel Theta 2= Angle of Achilles in relation to tibia

Figure 5: Diagram of how the Achilles Tendon functions

Free Body Diagram

Figure 6: Free body diagram of Torque analysis

Green, 14

Results

- Assuming average Foot size and mass of 14-year-old male and a distance of 6 cm between tibia and Achillies
- Max torque of 47.3 NM

Figure 7: Graph of results of torque and tension

Designing Gear System

Figure 8: Written work from gear system analysis part 1

Designing Gear System

Figure 9: Written work from gear system analysis part 2

Avila, 16

Possible Materials for Exoskeleton

Suggested Materials from the Degruyter publication [1]

Aluminum 6061-T6

- Hardness, Vickers: 107, Ultimate Tensile Strength: 310 MPa, Yield Tensile Strength: 276 MPa [3], about \$4.67-\$252.94 (depending on thickness) [7], density (kg/m^3): 2700 [11]
- Steel Low Carbon
 - Hardness, Vickers: 131, Ultimate Tensile Strength: 440 MPa, Yield Tensile Strength: 370 MPa [4], about \$0.55 per kg [8], density (kg/m^3): 7850 [12]

Steel 4140

Hardness, Vickers: 207, Tensile Strength: 655 MPa, Yield Strength: 415 MPa [5], about \$0.55 per kg [9], density (kg/m^3): 7833 [13]

▶ Titanium Grade 5

- Hardness, Vickers: 349, Ultimate Tenslie Strength: 950 MPa, Yield Tensile Strength: 880 MPa [6], about \$50 per kg [10], density (kg/m^3): 4540 [14]
- Dr. Lerner will provide a carbon fiber footplate and the calf cuff
- Carbon fiber and Aluminum

Possible Materials for Exoskeleton

- Dr. Lerner will provide a carbon fiber footplate
- Calculate the needed thickness of the footplate

 \blacktriangleright F = force exerted by user

- ► A = to the surface area of the foot
- $\triangleright \sigma = normal \ stress$
- \blacktriangleright $t = \sigma \frac{L}{s}$

 $\sigma = \frac{F}{A}$

- ► L = length of footplate
- ► S = allowable stress of material

- Assuming the user is an average 14-year-old male
 - Mass: 60 kg
 - ▶ Foot length: 24.45 cm
 - Foot width: 9.65 cm
 - S = 3.5 GPA or 3.5*10^9 Pa

F =
$$mg\mu$$
 → F = (60kg)(0.5) $\left(9.81 \frac{m}{s^2}\right)$ →
F = 294 N
 μ = 0.5
(friction coefficient of shoe against ground)

$$t = 8.7 * 10^{-4} \text{ mm}$$

Schedule

Project Item	Due Date		Days Left	Completion Status				
Timecard Wk1	9/4/23	11:59 PM	-16	Completed •				
Staff Meeting #1	9/8/23	5:30 PM	-12	Completed 🔹				
Timecard Wk2	9/11/23	11:59 PM	-9	Completed				
Client Meeting #1	9/14/23	4:00-4:30 PM	-6	Completed				
Staff Meeting #2	9/15/23	5:30 PM	-5	Completed				
Timecard Wk3	9/18/23	11:59 PM	-2	Completed				
Presentation 1	9/19/23	5:30 PM	-1	In Progress 🔻				
Project Description	Project Description							
Background & Benchmarking	Background & Benchmarking							
Customer and Engineering Requirements	Customer and Engineering Requirements							
Research within Your Design Space- A Literature Review	Research within Your Design Space- A Literature Review							
Research within Your Design Space- Mathematical Modelling	Research within Your Design Space- Mathematical Modelling							
Schedule & Budget	Schedule & Budget							
Timecard Wk4	9/25/23	11:59 PM	5	•				
Client Meeting #2	9/26/23	3:45-4:00 PM	6	•				
Staff Meeting #3	9/29/23	5:30 PM	9	•				
Timecard Wk5	10/2/23	11:59 PM	12	•				
Staff Meeting #4	10/6/23	5:30 PM	16	•				
Timecard Wk6	10/9/23	11:59 PM	19	•				
Presentation 2	10/10/23	5:30 PM	20	•				
Project Description								

Figure 10: Small Portion of teams current schedule

Budget

- Total Budget: \$4,000
- Each Leg must be <\$2,000</p>
- Based off previous designs put out by Dr. Lerner, we might need materials below, per leg
 - Torque Transducer
 - Pully System
 - Transmission Crimping site
 - Thrust Ball bearings x2
 - Shoulder Belt
 - Steel bolts x4
 - Pully Bridge

Thank You Any Questions?

References

- [4] F. S. S. Instruments et al., "AISI 1018 Mild/Low Carbon Steel," AZoM.com, <u>https://www.azom.com/article.aspx?ArticleID=6115</u> (accessed Sep. 19, 2023).
- 5] F. S. S. Instruments et al., "AISI 4140 Alloy Steel (UNS G41400)," AZOM.com, https://www.azom.com/article.aspx?ArticleID=6769 (accessed Sep. 19, 2023).
- [6] ASM Material Data Sheet, <u>https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641</u> (accessed Sep. 19, 2023).
- [7] "Aluminum Sheet/Plate 6061 T6/T651," Aluminum Sheet 6061 T6/T651 | Online Metals, <u>https://www.onlinemetals.com/en/buy/aluminum-sheet-plate-6061-t6-t651</u> (accessed Sep. 19, 2023).
- [8] "What is Price of Low-carbon Steel Definition," Material Properties, <u>https://material-properties.org/what-is-price-of-low-carbon-steel-definition/</u> (accessed Sep. 19, 2023).
- [9] "ASTM Steel A36 Steel Plate 50mm Thick A36 S235 S355 Steel Plate Price Per Kg," Astm Steel A36 Steel Plate 50mm Thick A36 S235 S355 Steel Plate Price Per Kg -Buy Astm Steel,Hot Rolled Carbon Steel Plate,Astm A36 Steel Plate Product on Alibaba.com, <u>https://www.alibaba.com/product-detail/ASTM-Steel-A36-Steel-Plate-50mm 1600329933029.html?spm=a2700.7724857.0.0.2edb28558RMN1z</u> (accessed Sep. 19, 2023).
- [10] "Titanium 6AI-4V Grade 5, UNS R56400 Titanium Grade 5 Product Supplier," Titanium Grade 5 Ti-6A | 4V Supplier, Titanium Gr.5 Price Per Kg in India, <u>https://www.fastwell.in/titanium-grade-5.html</u> (accessed Sep. 19, 2023).
- [11] World Material, "Weight & Density of Aluminum 6061 g/cm3, lbs/in3, kg/m3, g/ml, lb/ft3, g/mm3, Cubic Inch," World Material, <u>https://www.theworldmaterial.com/weight-density-of-aluminum/</u> (accessed Sep. 19, 2023).
- [12] "Density of steel," Home, <u>https://www.pipingmaterial.ae/blog/density-of-steel/#:~:text=Density%20of%20carbon%20steel%20and,%2C%20at%207%2C860%20kg%2Fm3</u>. (accessed Sep. 19, 2023).
- [13] "4140 Product Guide," alloy-steel 4140 Product Guide from Online Metals, <u>https://www.onlinemetals.com/en/product-guide/alloy/4140</u> (accessed Sep. 19, 2023).
- [14] Properties of Titanium Roy Mech, <u>https://roymech.org/Useful_Tables/Matter/Titanium.html#:~:text=Titanium%20is%20a%20light%20metal,than%20iron%20at1560oC</u>. (accessed Sep. 19, 2023).