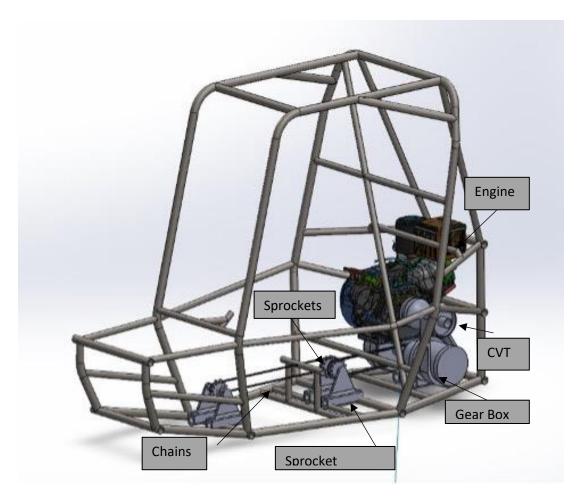
Front Suspension	Zachary Biehl
	Jared Bonds
-	Dylan Wisniewski
Drivetrain	Erik DiMaria
	Claire Pescatore
	Logan Gerard Wilson
Rear Suspension	Samuel Larios
	Robert Gerlinger
	Tanner Bunch

ME 486C Engineering Model Summary


Top Level Design Summary	3
Figure 1: Drive Train QFD	4
Figure 2: Drive Train CAD	5
Figure 3 : Front Suspension CAD V1	6
Figure 4 : Front Suspension Final Prototype	6
Figure 5 : Front Suspension QFD	8
Figure 6 : Rear Suspension CAD	9
Figure 7: Rear Suspension Prototype V1	10
Figure 8 : Rear Suspension Prototype V2	11
Figure 9: Rear Suspension QRD	12
Summary of Standards, Codes, and Regulations	13
Table 1: Standards and codes	13
Code of Standard Practice for Cold-Formed Steel Structural Framing	14
ASTM A1003/A1003M-15	14
Structural Steel Welding Code	14
Technical specifications for automotive vehicles.	14
Summary of Equations and Solutions	15
Table 2: Load Cases and FOS	16
Flow Charts and other Diagrams	18
Figure 10: Black Box Model	18
Figure 11: Functional Model	18
Moving Forward	19
Appendix A: Summary of Equations and Solutions	21

Top Level Design Summary

For the 2022-2023 academic year, using the existing frame from the 2021-2022 team, a new team is tasked with new suspension (front and rear) and drivetrain to compete in the 2023 SAE Baja Competitions being held in Washougal, Washington on May 30, 2023. All sub-teams will be responsible for updating the cockpit. From the original project description given at the beginning of the year, the 2023 SAE Baja Team has been provided with the challenge to have all new suspension and drive train designs compared to the original description of having to complete the Baja with the 2022 components. This was a change because the 2022 Baja team duplicated the year prior and Northern Arizona University would like to see a variance to these designs. The designs of each sub-team system are below.

				Pr	oject:		S	AE Ba	ija: C 1-20-	rivet	rain					
	System QFD/ House of Quality				Date:				1-20-	23						
1	Reduce weight									-					-	
2	Improve complexity		++	\sim												
3	Reduce material usage		-	+	\sim	~						Legend				
4	Increase durability		-									A	2020-	2021 N	JAU	
5	Team Cohesiveness			-				\sim				В	Orego	on Stat	e Univ	/ersi
ŝ	Reduce Design/Production time			+	++		-					С	Virgin	nia Tec	:h.	
7	Adhere to Rules															
B	Increase handling		+			++	++									
9	Competitive vehicle		++			+	++			-			<			
					Tec	hnica	l Req	uirem	ents			Co	ompet	ition I	Revie	w
	Customer Needs	Customer Weights (%)	Reduce weight	Improve complexity	Reduce material usage	Increase durability	Team Cohesiveness	Reduce Design/Production time	Adhere to Rules	Increase handling	Competitive vehicle	1 Poor	2	3 Acceptable	4	5 Excellent
1	Meets all Design Req.	5							9					Α		B
2	Meets all Safety Req.	5							9					Α		B
3	4WD Compatible	4	1	3				3	9	9		BC				Α
4	Low Cost	3	3	3	9			9						AB	С	
5	Production/Manufacturing Capability	5		6	3	3		9							Α	B
ô	Competitive in events	3	3			3	3				9					AB
7	Avoid Internal Discourse	5					9								ABC	
8	Deadline Management	5	3			3	3			1						AB
9	Improve Previous Design	2		9	6		9			9	9					AB
	Technical Requireme	nt Units	kg		s	MPa		Hours		ĸN						
	Technical Requirement	Targets	15		*	TBD	თ	<u>م</u>		*						
	Absolute Technical Imp	ortance	92	8	\$	68	8	5	66	8	ŝ					
	, and the second s		0	6												

Figure 1: Drive Train QFD

Figure 2: Drive Train CAD

From figure 2: Drivetrain sub-team has a double chain system linking the front to the back of the frame with sprockets connected to the drive shafts into the gearbox and CVT. This system will drive the entire vehicle, rolling the car which impacts the suspension sub-teams. The two chains connecting to the system will assist in making this vehicle all-wheel drive. Chain drive connects to a gearbox. Our gear box has two pinions and two gears that will be made of steel alloy, encased by aluminum. The most recent decision our team has made has been to manufacture steel reuleaux triangle's shafts in the machine shop which will cut down in costs. This shape of the shaft eliminates the use of keys and keyways inside the gearbox and allows our team to make changes in house. From there we also will have a CVT that our team gathered from the previous team, this will allow the engine to operate at a constant RPM while the vehicle moves at varying speeds. The CVT connects from the top shaft of the gear box to the engine. Sprockets are held by sprocket holders at the front, middle and rear of the vehicle. These sprockets are holding the chain tight to control the movement of the drive shafts.

Front Suspension Sub-Team:

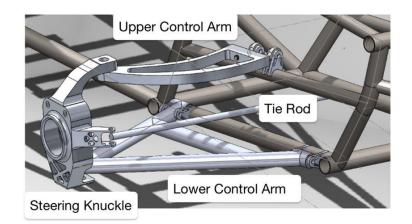


Figure 3 3: Front Suspension CAD V1

Figure 4 4: Front Suspension Final Prototype

From Figure 1: Front Suspension CAD V1, there are four items that keep the front end connected and working in synchronous. The main purpose of these components is to keep a parallel line of action allowing the wheel to remain in the adjustments throughout the full wheel travel. In our design we have investigated the cause of bump steer, and the area that contributes to this is the overall length of the tie rod. Having a steering rack at an optimal length directly contributes to the length of the tie rode. The front suspension team analyzed this and found that a 12in steering rack will allow for minimal bump steer. Bump steer is when the angle of the front wheels change as the suspension is cycled through the travel, "from bump to bump." Knuckle, the component where the main members of the front end come together. This is a main area that the front suspension team can cut weight as pervious years did not to an adequate FMEA, with front suspension utilizing the fact that the overall weigh of the vehicle around 350lbs, the front knuckle design is sufficient to survive impacts while remaining as light as possible. As an engineering requirement of 4x4, the front suspension team has developed a J-arm as the upper control arm to move the sock mount to the lower A-arm. This allows for a low center of gravity and keeps the shock out of the way where the axle will be located. The redesign of the upper control arm is

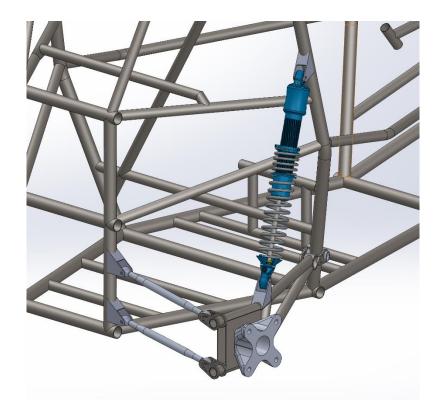
to simplify the manufacturing process as well as cut down on price, as the team can now manufacture the upper control arm out of 4130 steel, rather than purchasing more aluminum and using the CNC. All together this allows for the front suspension team to answer all of the ER and CR.

Customer requirements, many of them are directly correlated with the SAE Baja competition. From the competition regulations the requirements that were selected were to meet design and safety needs. These are mandatory customer and competition needs that if not followed properly can result in disqualification. In addition to those, 4WD is also required this year by SAE Baja. Next from our client David Willy was low production cost and manufacturing capability. Professor Willy mentioned that based off our own skill levels and the resources we have allocated to us we should design parts and concepts with an honest understanding of our ability. Next, also from Professor Willy was to avoid internal conflict. Previous NAU Baja teams have struggled with this aspect and as a result this has become a client need to successfully complete this project. After that is the team's most important customer requirement which is to create a system that is competitive in all events. There is a great deal of variety with the Baja competitions and our client would like our vehicle to perform well in all individual competitions. Finally, rounding out the customer needs is deadline management and the ability to improve the overall design from previous NAU teams.

- 1. Meets all Design Req. 10%
- 2. Meets all Safety Req. 10%
- 3. 4WD Compatible 10%
- 4. Low Cost 10%
- 5. Production/Manufacturing Capability 10%
- 6. Competitive in events 20%
- 7. Avoid Internal Discourse- 10%
- 8. Deadline Management 10%
- 9. Improve Previous Design 10%

Engineering requirements either come from Professor David willy or from student research and knowledge. First up for ERs is the reduction of as much weight as possible. Racing speed comes down to two factors, weight, and power. In this competition power is regulated amongst all collegiate teams, thus weight plays a massive factor in performance. Next is to improve the overall suspension travel. This is beneficial in all competition aspects. After that the group chose to select material usage as another ER. This will mean the team will conserve money to allow for an adequate budget for travel and emergency costs. Durability was also selected by the group as a key requirement. Time is critical in the competition setting and by dedicating less time to fixing broken components the group can maximize its time for actual racing. The group has also chosen to select drivetrain compatibility and competition rules into the team ERs. These are mandatory requirements that should not be neglected. Additionally, the team has placed an emphasis on vehicle handling. These factors can be seen in handling time and steering angle.

1. Reduce weight - Pounds (lbs)


- 2. Improve Suspension Travel Inches
- 3. Reduce material usage \$
- 4. Increase durability psi/ksi
- 5. Drivetrain Compatibility Y/N
- 6. Minimize Design/Production time Hours
- 7. Adhere to Rules Y/N
- 8. Increase handling Seconds
- 9. Increase Steering Angle Degrees

										1						
				Pi	roject:		SAE	Baja:	Front	Susp	ensio	n				
	System QFD/ House of Quality				Date:				01-28-	23						
1	Reduce weight							Legen	d	1						
2	Improve Suspension Travel		++					A		2022 N	IAU					
3	Reduce material usage		++	+				в	Orego	n State	Unive	rsity (4th	Place)			
4	Increase durability		+		+		~	С	Virgini	a Tech	. 5th P	ace				
5	Drivetrain Compatability			+				~		1						
6	Minimize Design/Production time				+		-									
7	Adhere to Rules															
8	Increase handling		+	+			++		++							
9	Increase Steering Angle			+			++		+	++						
					Те	chnica	al Requ	uireme	nts				Compe	tition R	leview	
1	Customer Needs Meets all Design Reg.	Customer Weights	L Reduce weight	→ Improve Suspension Travel	Reduce material usage	oo Increase durability	co Drivetrain Compatability	Minimize Design/Production time	Adhere to Rules	Increase handling	ω Increase Steering Angle	D 1 Poor	10	3 Acceptable	4	8 5 Excellent
2		10.00%	1	1		9	3		9		3	A	•			BC
	Meets all Safety Req.			3		9	9		9	1	6		A			
3 4	4WD Compatible Low Cost			3	9	3	9	3	9	1	3	A		ABC		BC
4 5	Production/Manufacturing Capability			3	9 3	3		9			3		A	ABC	BC	
6	Competitive in events		9	6	6	6		9	3	3	6	A	A		ВС	BC
7	Avoid Internal Discourse	10.00%	3	0	0	0	3	3			0	Â		BC		80
8	Deadline Management						6	6	3			Â				BC
9	Improve Previous Design		3	9	6	6	9		Ť	6	3	A				BC
2	Technical Requiren			inches	\$	MPa	*	Hours		v v	Degees					20
	Technical Requiremer	nt Targets		24 i	\$1,400	TBD	N/A	200 Approx. H	N/A	TBD	50 Degrees					
	Absolute Technical Im	portance		2.8	е е	3.6	3.9	2.1	2.7	1.3	2.7					

Figure 5 5: Front Suspension QFD

Rear-end sub-team

Our decision process was narrowed down by utilizing a black box model, then a full functional model for the rear suspension. As a team we presented ideas through our client then moved forward completing a decision matrix to get our final concept idea. It is vital we use the same criteria needed within the customer needs, because our final design should reflect our house of quality requirements. The final design features a trailing arm with two supporting lateral links. The trailing arm has a slight bend out towards the tire and orients the hub parallel with the side of the car. The shock mount is placed on the top of the trailing arm. The end of the trailing arm features some avocado tabs and two tubing lateral links. On the ends of the links there will be heims to create adjustability to the overall geometry of the suspension system. The appropriate sizing, dimensions, and geometrical orientation will make this design successful. The image below represents our prototype.

Figure 6 6: Rear Suspension CAD

The first protype follows the design in the Solid works file. It is composed of PVC and 3D printed parts to replicate the Lifesize Design. It gave the team experience in fabrication and helped lead into the next design process.

Figure 77: Rear Suspension Prototype V1

The 2nd prototype below depicts the same style of rear end suspension with some slight modifications. After the first protype and some Solid works stress analysis, it was decided to eliminate the shock mount member to reduce weight without hurting the integrity of the design. We also replaced the front mounting point with a hyme to add more toe in/out adjustability. The avocado tabs were also eliminated to reduce weight and improve the geometry performance throughout the suspension cycle. The hub in the image below is a simple mockup to help envision the final design.

Figure 8 8: Rear Suspension Prototype V2

The next steps are to manufacture the final design. Parts are being ordered and the components that need fabricated are under way. Some slight modifications and design adjustments may be required during the manufacturing process.

				Pr	oject:	5	SAE E	Baja:	Rear	Susp	oensi	on				
	System QFD/ House of Quality				Date:			Ċ	01-28-	23						
1	Reduce weight							Legen	d							
2	Improve Suspension Travel		++		_			A	2021-	20221	VAU					
	Reduce material usage		+	+		_		В	Orego	on Stat	e Univ	ersity (4t	h Place	e)		
	Increase durability		+		+			С	Virgin	ia Tec	h. 5th F	Place				
5	Team Cohesiveness															
5	Minimize Design/Production time				+		-									
	Adhere to Rules															
	Increase handling		+				++		++			_				
	Competitive Vehicle		++				++		+	++			_			
					Teo	chnica	al Requ	lireme	ents			с	ompet	tition F	Reviev	v
1 2 3 4	Meets all Design Req. 15 Meets all Safety Req. 15 Clearance 10	%000 %000 %000 %000 %000 %000 %000 %00	C T Reduce weight	ය ය Improve Suspension Travel	co Reduce material usage	ده المعامد المعامل الم	Team Cohesiveness	6 Minimize Design/Production time	න ය Adhere to Rules	o Increase handling	α Competitive Vehicle	1 Poor	N A A A AB	C 3 Acceptable	4	DA DA S Excellent
ł		.00% 5.00%	3	3 6	3	3		9			6	^	AB	C	BC	
		5.00%	3	0	5	9		9	6	6	6	A			BC	BC
		.00%	5			9	9		0	0	0	A		BC		00
		.00%	3				3			1		A		00		BC
		0.00%	5	9	6		9			9	9	~				BC
	Technical Requirement		sql	inches	69	MPa	*	Hours	*	Z¥	Degees					
	Technical Requirement Ta	argets	100	24	\$1,400	TBD	N/A	200 Approx.	N/A	TBD	50 Degrees					
	Absolute Technical Impor	tance	_	2.3	1.5	1.5	1.7	1.8	4.2	2.5	2.6					
			-	(1	-	-	7	-	V	(1)	(1					

Figure 9: Rear Suspension QRD

For the rear suspension, our customer requirements were aligned mostly with the rules set by SAE for the competition. Our first few customer needs were directly from the rules, which was to meet design and safety regulation of the competitions, as if this were not met properly, our team would then be disqualified. From our client David Willy it was important that we kept everything low cost and that we would not overestimate the project as whole as well as within sub teams when it came to manufacturing and designing. Another main request was to avoid internal discloses as previous teams failed to do so and maintaining a relationship with our client is especially important. To assist with this, our client stated to have great deadline management to prepare for anything to go wrong. Lastly was to improve the overall design from previous years, making it unique and able to compete in all aspects of the competition as we want to score high as a team and represent NAU highly.

- 1. Meets all Design Req. 15%
- 2. Meets all Safety Req. 15%
- 3. Clearance -10%
- 4. Low Cost -5%
- 5. Production/Manufacturing Capability 15%
- 6. Terrain Type 15%
- 7. Avoid Internal Discourse 5%
- 8. Deadline Management 10%
- 9. Improve Previous Design 10%

The team's engineering requirements came from both our client as well as research done by our sub-teams for what we believed seemed fit. First, we wanted to reduce weight, this is very important as most competitive cars keep their weight around or below 300lbs as the more we weigh with the same amount of power the lower the performance. By meeting our specs for competition and designing the most efficient suspension geometry will give us the most impact reduction. By reducing material usage, it will save us money to use throughout the rest of the project. Increasing the durability will ensure our design life cycle which could then save us much more time and money making it more durable. With our designs we want to make sure we do the best when it comes to how we align the rear end to maximize our handling. Lastly, it is to have a competitive vehicle that can compete in every aspect as we are going to be faced with many different obstacles that we must score high in within the competition.

- 1. Reduce weight Pounds (lbs)
- 2. Meet Hydraulic Specs Inches
- 3. Reduce material usage \$
- 4. Increase durability MPa
- 5. Team Cohesiveness minutes/hours
- 6. Minimize Design/Production time minutes/hours
- 7. Adhering to Rules
- 8. Increase handling
- 9. Competitive Vehicle

Summary of Standards, Codes, and Regulations

All standards, codes and regulations listed below are applicable to the design and functionality of the 2023 SAE Baja vehicle. Multiple SAE codes for the vehicle were found in the rulebook for the 2023 SAE competition. For the vehicle to pass inspection and be able to compete all specified standards, codes, and regulations must be adhered to. The reason is to ensure safety of everyone in or attending the competition and keep the vehicle regulated. Lighting codes that require working break lights on the vehicle are specified in the rulebook. Backup alarm systems are under code for safety of others around the vehicle while in operation. Standards for gear design provided by AGMA are used in the gearbox design. ANSI standards are used when proportioning the teeth on the spur and helical gears. Guidelines and regulations for geometric dimensioning and tolerancing are put in practice to aid in the manufacturability of the designs. All standards, codes, and regulations listed in this document are important to the design and functionality of the vehicle being designed and will also ensure compliance with the competition requirements set by SAE.

Standard Number or Code	Title of Standard	How it applies to Project
J586	Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width	Our vehicle must have brake lights
J759	Lighting Identification Code	Code specifies certain lighting requirements that must be in line with the vehicle

Table 1: Standards and codes

J994	Alarm – Backup – Electric Laboratory Tests	Defined a set of requirements for backup alarms on the vehicle
J1741	Discriminating Back-Up Alarm Standard	Evaluates the performance of the backup alarm
AGMA-1003-H07	Tooth Proportions for Fine- Pitch Spur and Helical Gearing	Allowing for meshing without interference with the gearbox system.
AISI S202-20 Code of Standard Practice for Cold-Formed Steel Structural Framing		For the steel welding we needed to fix the back of our frame and how that applies to structural framing.
ASME Y14	Guideline for the design language of geometric dimensioning and tolerancing	Dimensioning and geometric equations used to gear and shaft equations.
ASTM A1003/A1003M- 15	This specification covers coated steel sheet used in the manufacture of cold- formed framing members, such as, but not limited to, studs, joists, purlins, girts, and track	For the sheet metal used for CVT casing and the chain guard.
AWS D:1.3	Structural Steel Welding Code	For the restructuring of our frame to fit the engine.
ANSI100-H07	Tooth Proportions for Fine- Pitch Spur and Helical Gearing	For all parameters in our gears.
ISO/TS 16949	Technical specifications for automotive vehicles.	Follow specifications given by engines and any automotive moving part.
SAE	SAE BAJA Rules and Regulations 2023	Our vehicle must comply to these rules and regulations in order to complete and pass inspection in order to compete.
J1147_201801	Welding, Brazing, and Soldering- Materials and Practices	This applies to our project because we need to follow practices for welding our components together. This includes welding sections of the frame for structural support.

J836/3_202111	3D CAD for SAE J826 H-Point Machine	This applies to our project because our rear suspension needs to be modeled before it can be manufactured
J836_201801	Automotive Metallurgical Joining	This applies to our project because we are welding different materials together. Our frame components are made of chromoly and other members are made of 304 steel.
J826/2_201610	2-D CAD Template for SAE J826 H-Point Machine	This applies to our project because our rear suspension needs to be modeled before it can be manufactured. Creating 2D drawings ensures that machinists know how to manufacture certain parts.

Summary of Equations and Solutions

The conditions that led to our analyzed "load cases" all lead into each design component of front suspension, rear suspension, and drivetrain. All these components impact performance and play a critical role while the car is in motion. Fundamental forces of the suspension and drivetrain are measured to estimate the normal and shear force while competing in the competition obstacles. The vehicle will undergo various situations operating over obstacles such as mud, rocks, barriers, logs, and many other potential load cases. Some of these situations may undergo more force than "regular" operation on flat terrain. It is important to analyze all subsystems in the "worst case" scenario. This will ensure safety factors are high enough to withstand the highest amounts of force endured. The calculations below are divided into each sub-team along with the design process and equations/software used.

Front Suspension:

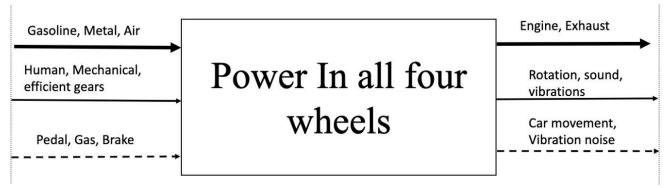
Within the Front Suspension subsystem, the three most important areas we chose to analyze were the Outer CV Axle Splines, Lower Control Arms, and Upper Control Arms. The Outer CV Axle Splines will be press fit into the wheel hub, this press fit is the only force counteracting the torque transmitted from the drivetrain. Through some research and Excel Calculations the press fit that we will be utilizing can support far more torque than we expect to see. With our current motor and gear ratio we plan to see only about 6.5 ft-lbs of torque while the max this setup can support is 219 ft-lbs. The next order of business was the load that the lower control arms. Through various load calculations based on the estimated final weight, plus driver weight, and including jumps and landings, the lower control arms are expected to see 220lbs of force under the worst-case scenario. With the chromoly steel tubing that we purchased these values do not even approach the yield strength. Lastly the team analyzed the camber and toe angle effects under max suspension bump and rebound. With the final suspension setup and estimated weight of 450lbs with a driver the max camber is expected to range from approximately -1 degree to -3 degrees, while the toe angle is expected to range from 1 degree to -1 degree. Both angles are measured over a 3-inch travel distance.

Rear Suspension:

Following our first steps in the design process the rear end team utilized Lotus Shark Software. From the start we began to draw out designs that would work with our existing frame, assuring they abide by the SAE competition rules, and then began to create a model on SolidWorks. This allowed our team to find critical points within the rear suspension system and apply them to Shark Software. By creating an accurate representation of what we want our actual model to look like we were able to test some of the functions on the Shark Software showing our sub team how components would perform. Such as toe and camber angle, it would show us by providing graphs of information of each and many more that are not so applicable to the rear end. Figures of the rear end shark model will be shown within the appendix.

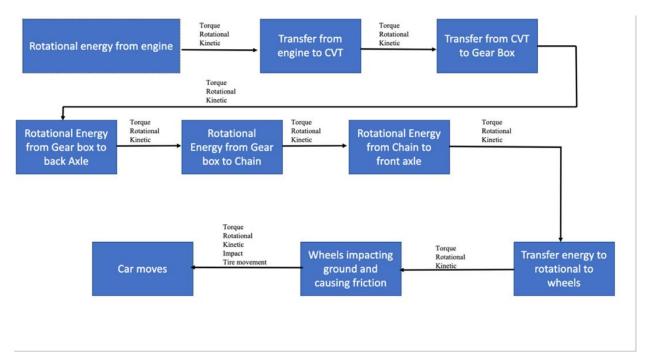
For the Rear trailing arms, the rear suspension team utilized Solidworks remote load feature. The team applied 200 lbf on each trailing arm member without the supporting hub casing/rear end links. The rear suspension team plans to make further adjustments to the dimensions once we determine the rear axle locations. Then the team will be able to properly determine the maximum amount of load the rearend suspension can withstand while competing.

Drive Train:


After comprehending what our team might have to go through in the competition, drivetrain decided to match our designs with the parameters that would best suit the teams' scenarios and the teams' placements and way the drivetrain system is designed is to satisfy basic requirements. We knew that the components to the gearbox had to withstand what the engine would output as well as contain a casing that is secured tight so no more issues would arise unnecessarily. Given the safety factors that our team came up with, we decided that the little extra boost above one would account for extra safety, accounting for less breakage or unforeseen consequences. With the rotational torque coming from the engine/CVT into the gearbox, the team knew that most of the stress would be in the middle shaft inside our gearbox, naming it the "critical gear". If that gear was above the safety factors designated, and with the already extra boost, the team knew the design would be more than safe from breakage. With the shaft it was just another deciding of what parameters and dimensions would allow for a minimum safety factor of 1. All equations and parameters used will be in appendix A.

Sub-Team	Part	Load Case Scenario	Material	Min.
				F.o.S.
Front	CV Axle Outer	Under acceleration 8.5 N-m of torque being	Steel	25
Suspension	Spline	transmitted through the front axles, Stress		
		concentration on the outer surface of spline.		
		(Spline will be press fit into hub)		
	Lower Control	220 lbs of force transmitted through each of	Chromoly Steel	2.4
	Arm	the lower control arms	Tubing	
	Upper Control		Chromoly Steel	N/A
	Arm (J-Arm)	Under max Bump and Rebound, the max Toe	Tubing	
		and Camber angles are expected to be -3		
		degrees and -1 degree respectively.		

Table 2: Load Cases and FOS


Rear	Bearings	The weight of the vehicle as it completes	Steel	TBD
Suspension		dynamic movement causes compressive		
		loads against the housing.		
	Trailing arm	The trailing arm is controlled by a shock	Chromoly	TBD
		spring/dampener that soaks up the energy		
		caused from terrain changes. The control		
		arm endures compression and tension loads		
		at the shock mounting point.		
	Links	The links attached to the trailing arm with	ABS	TBD
		experience axial loads as the vehicle is		
		cornering or bumping into terrain from the		
		side.		
	Axle	Under acceleration of X N-m of torque	Steel	TBD
		transmitted from the gear box to the axle,		
		Wall thickness of the lightened section is		
		crucial to not fail.		
	Hub	After impact of the tires through the	Aluminum	TBD
		dynamic movement over obstacles, the		
		wheel inflicts various forces on the		
		studs/hub.		
Drivetrain	Gears (Bending)	Calculated torque range will be exerted in	Steel	1.5
		rotational energy onto the gears from the		
		given engine that then tells the teams if the		
		design for the gears is good enough to meet		
		the criteria.		
	Gears (Contact)	Calculated torque range will be exerted in	Steel	1.2
	, , , , , , , , , , , , , , , , , , ,	rotational energy onto the gears from the		
		given engine that then tells the teams if the		
		design for the gears is good enough to meet		
		the criteria.		
	Gearbox Shafts	Calculated torque and weight by excel	Steel/Aluminum	1
		spreadsheet to meet safety criteria given	,	
		certain parameters from materials etc		
	Bearings	Calculated torque and weight by excel	Steel/Aluminum	1
		spreadsheet to meet safety criteria given		_
		certain parameters from materials etc		
		Chosen on diameter and documented		
		through order sheet.		
		5 • • • • • • • • • • • • • • • • • • •		

Flow Charts and other Diagrams

Figure 10:10 Black Box Model

Power needs to go into the car, which comes from the engine, which needs to be transmitted in a way that power is transmitted to all four wheels. A human is included as one must be piloting the car, with pedals gas and brakes included as they are required to activate the inputs to the car. The inputs are required to power all four wheels, or at the very least be capable of all wheel drive. The outputs are listed in a way that shows all the possible results from the inputs.

Figure 11:11 Functional Model

The functional model goes over the steps required to get the car moving. Power from the engine goes into the CVT which is fed into the gearbox. The gearbox and CVT are required to ensure the car operate at an optimal speed and torque for each competition. Figure 7a goes over the torque speed characteristics of the engine that were used for the previous calculations.

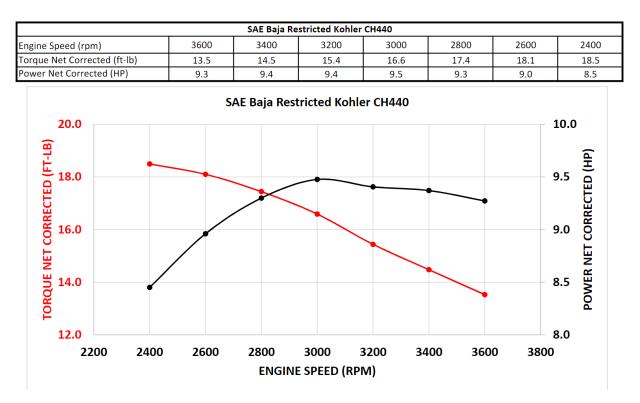


Figure 12: Kohler Torque Speed Characteristics

For the final design chosen, the energy from the gearbox is transmitted to a chain that runs from the back to the front of the car to provide all wheel drive. The power is then transferred to the wheels which provides the required force to move the car.

Moving Forward

Front Suspension:

Moving forward the front suspension team still has some areas to address. Within the next few weeks to months the front suspension team will focus on carrying out steering calculations which will also include modifying and fabricating a new steering rack to achieve the desired steering throw while staying in compliance with little to no bump steer. Another area of importance will be the spring rate and dampening adjustment and fine tuning. Suspension performance steering will play a massive role in the way the vehicle handles and ultimately performs in competition. Once these calculations have taken place the front suspension team plans to begin fabrication on the knuckles, hubs, and control arms.

Rear Suspension:

Rear suspension will spend the next few weeks finalizing the design of the rear hubs, performing axial load calculations, and beginning fabrication. Fabrication will be limited to components not reliant on drivetrain's output shaft location. Elements that could begin getting manufactured include the rear links, trailing arm plates, and eventually rear hubs. Then, once drivetrain does finalize the output shaft location the rear suspension team can begin fabricating the complete trailing arm assembly to be bolted up to the chassis.

Drivetrain:

The drivetrain sub team will focus the next few weeks on modeling the various components including the engine, CVT transmission, and gearbox in Solidworks. From the modeling, tabs and mounting brackets will be made to ensure the powertrain does not move during testing or driving. Next, the group will perform chain and sprocket force analyses to ensure that under full acceleration and maximum torque those components won't fail. Once all these calculations have taken place the drivetrain team will begin fabrication of mounts and gearbox components.

Appendix A: Summary of Equations and Solutions

Figure 13:13 Outer CV Axle Spline

Figure 14 14: Upper and Lower Control Arms

Table 1: Press Fit Calculations

Shaft	
Young's Modulus, <i>Ei</i> (PSI)	29,000,000.0
Poisson's Ratio, vi	0.340
Shaft Internal Diameter, di (inch)	1.000
Shaft Nominal Diameter, d (inch)	1.250
Shaft Upper Tolerance (inch)	0.001
Shaft Lower Tolerance (inch)	0.001
Shaft Maximum Diameter (inch)	1.251
Shaft Minimum Diameter (inch)	1.251

Hub	
Young's Modulus, Eo (PSI)	29,000,000.0
Poisson's Ratio, vo	0.340
Hub Outer Diameter, do (inch)	1.50
Hole Nominal Diameter, d (inch)	1.250
Hole Upper Tolerance (inch)	-0.001
Hole Lower Tolerance (inch)	0.000
Hole Maximum Diameter (inch)	1.249
Hole Minimum Diameter (inch)	1.250

Pressure Generated between Shaft and Hub				
Maximum Radial Interference, δmax (inch)	0.0006			
Minimum Radial Interference, δmin (inch)	0.0010			
Max Pressure Generated, pmax (PSI)	2,572			
Min Pressure Generated, pmin (PSI)	4,594			
Force Required to Engage/Disengage Shaft and Hub				
Width of Hub, w (inch)	2.08			
Friction Between Shaft and Hub, µ	0.20			
Area of Contact, A (inch ²)	8.17			
Force Required, maximum (lbs)	<u>4,202</u>			
Force Required, minimum (lbs)	<u>7,504</u>			
Torque that can be transmitted without slip				
Torque, maximum (ft-lbs)	<u>219</u>			

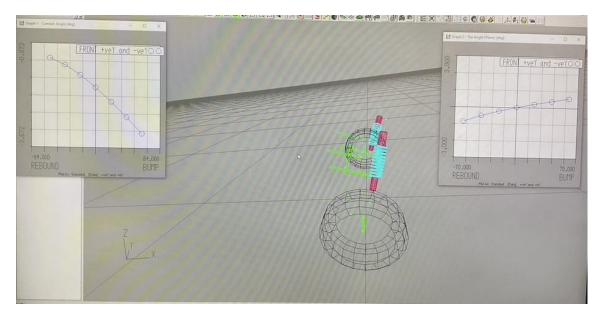


Figure 15 15: Shark Camber and Toe Angles for front end

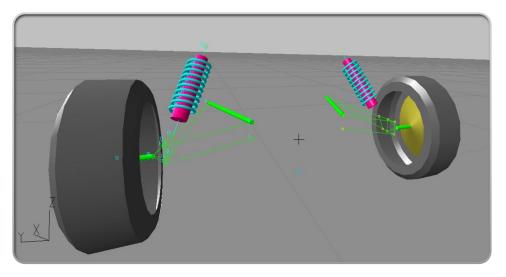


Figure 16 16: Shark Model for the rear end

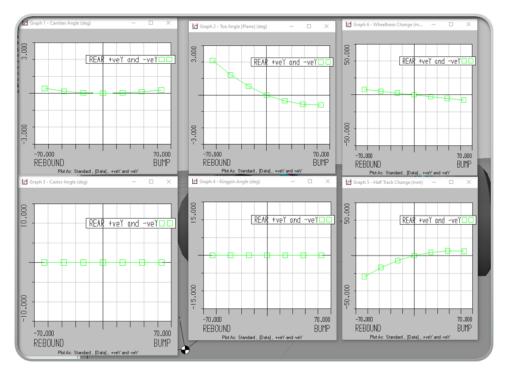


Figure 17 17: Shark Graphs for the rear end suspension

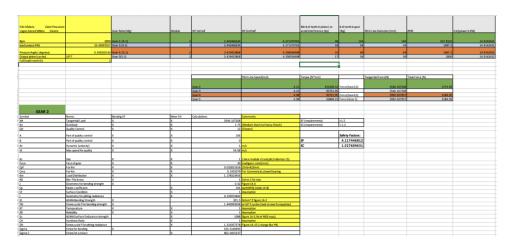


Figure 18: Gear equations/factor of safety requirements

18							
9							
GEAR 3							
1 Symbol	Name:	Bending SF	Wear SH	Calculations:	Comments:		
2 Wt	TangentialLoad	x	x	3546.107208			
3 Ko	Overload	x	х		(uniform shock)		
4 QV	Quality Control	x	х	10	(Chosen)		_
is a	Part of gulaity control	v	×	83.77638527			Safety Fact
6 8	Part of quality control		x	0.396850263		SF	3.04636
		x					
7 Kv	Dynamic (velocity)	x	х	1.12521692	m/s	SC	1.94576
is vt	Max speed for quality	x	х	33.53936221	m/s		
9 Ks	Size	x	х		(since module <s and="" diamter="" pitch="">5)</s>		
0 Face	Face of gear	x	х		(rushgear.com)(mm)		
1 Cpf	ForKm	x	x	0.032815556	25 <b<425mm< td=""><td></td><td></td></b<425mm<>		
2 Cma	For Km	x	х		For Commercial, Closed Gearing		
3 Km	Load Distribution	х	х	1.178323456			
i4 KB	Rim-Thickness	x			Set to 1 for now		
i5 1	Geometry for bending strength	x			Figure 14.6		
6 <u>Cp</u>	Elastic coefficient		x		sgrt(MPA) (table 14-8)		
57 Cf	Surface Condition		х		Assumption		
8	Geometry for pitting resistance		х	0.180269313			
9 <u>St</u>	AGMA Bending Strength	x		301.5			
0 YN	Stress cycle f for bending strength	x			at 10^7 cycles		
1 KT	Tempurature	x	x		Assumption		
2 KR	Reliability	x	х		Assumption		
3 Sc	AGMA Surface Endurance strength		х	1088			
4 CH	Hardness-Ratio		х	1			
S ZN	Stress cycle f for pitting resistance		x	1.100153749	Figure 14-15		
6 Sigma	Stress for bending	x		110.8138972			
7 Sigma C	Stress fot contact		х	615.164791			
8							
19							
10							
1							
2							
GEAR 4							
4 Symbol	Name:	Bending SF	Wear SH	Calculations:	Comments:		
IS Wt	TangentialLoad	x	х	2992.027957			
15 Ko	Overload	x	x		(uniform shock)		
17 QV	Quality Control	x	x	8	(Chosen)		_
8 A	Part of gulaity control	×	×	70.7222106			Safe ty Fact
9 B	Part of quality control	x	x	0.629960525		SF	2.62267
		*					
0 Kv	Dynamic (velocity)	x	х	1.261785793	m/s	SC	1.44753
1 Vt	Max speed for quality	x	х	23.79395879	m/s		
2 Ks	Size	x	х	1	(since module <5 and pitch diamter >5)		
			x	20	(rushgear.com)(mm)		
3 Face	Face of gear						
	Face of gear For Km	x	x		25 <b<425mm< td=""><td></td><td></td></b<425mm<>		
4 Cpf		x x		0.011350909	25 <b<425mm For Commerical, closed Gearing</b<425mm 		
4 Cpf 5 Cma 6 Km	For Km For Km Load Distribution	x x x	x	0.011350909 0.5638 1.575150909	For Commerical, closed Gearing		-
4 Cpf 5 Cma 6 Km	For Km For Km	x x x x x	x	0.011350909 0.5638 1.575150909			
4 Cpf 5 Cma 6 Km 7 KB	For Km For Km Load Distribution	x x x x x x	x	0.011350909 0.5638 1.575150909 1	For Commerical, closed Gearing		
4 Cpf 5 Cma 6 Km 7 KB 9 J 9 Cp	For Km For Km Load Distribution Rim-Thickness	x x x x x x	x	0.011350909 0.5638 1.575150909 1 0.42 191	For Commerical, closed Gearing Set to 1 for now Figure 14, 6 sqrt(MPA) (table 14-8)		
4 Cpf 5 Cma 6 Km 7 KB 9 J 9 Cp	For Km For Km Load Distribution Rim-Thickness Geometry for bending strength	x x x x x x	x	0.011350909 0.5538 1.575150909 1 0.42 191 1	For Commerical, closed Gearing Set to 1 for now Figure 14.6		
7 KB 8 J 9 Cp 00 Cf 1	For Km For Km Load Distribution Rm-Thickness Geometry for bending strength Elastic coefficient Surface Condition Geometry for pitting resistance	X X X X X X X X X X X X X X X X X X X	x x x	0.011350909 0.5638 1.575150909 0.42 1.0.42 1.91 1.0.42 1.91 0.180269313	For Commerical, closed Gearing Set to 1 for now Figure 14.6 sert(MPA) (table 14-8) Assumption		
 Gpf Gma Km J Cp Cp Cf J I 	For Km For Km Load Distribution Rim-Thickness Geometry for bending strength Elastic coefficient Surface Condition	X X X X X X X X X X X X X X X X X X X	x x x x x	0.01135099 0.553 1.57515099 0.42 191 0.42 191 0.180291 301.5 301.5	For Commerical, closed Gearing Set to 1 for now Figure 3.4.6 agar(MPA) (table 14-8) Assumption Mpa		
4 Cpf 5 Cma 6 Km 7 KB 9 Cp 9 Cp 10 Cf 11 I 12 St	For Km For Km Load Distribution Rm-Thickness Geometry for bending strength Elastic coefficient Surface Condition Geometry for pitting resistance	X X X X X X X X X X X X X	x x x x x	0.01135099 0.553 1.57515099 0.42 191 0.42 191 0.180291 301.5 301.5	For Commerical, closed Gearing Set to 1 for now Figure 14.6 sert(MPA) (table 14-8) Assumption		
44 [Cpf 55 [Cma 65 [Cma 77 [KB 99]Cp 90 [Cp 90 [Cf 90]Cf 91] 92 [St 93 [YN 94 [KT	For Km For Km Rm-Thickness Geometry for bending strength Elastic coefficient Surface Condition resistance Geometry for pitting resistance AGMA Bending Strength Stress cycle If or bending strength Tempurature.	X X X X X X X X X X X X X X X X X X X	x x x x x	0.01135000 0.5583 1.57515000 0.42 10 1 0.42 10 1 0.18029313 301.5 1.11966235 1.1196625 1.1196655 1.1196655 1.1196655 1.11966555 1.11966555 1.1196655555 1.11966555555555555555555555555555555555	For Commerical, closed Gearing Set to 1 for now Figure 34.6 segr(MPA) (table 14-8) Ansumption Mpa at 10*7 cycles Ansumption		
4 Cpf 5 Cma 6 Km 7 Kb 9 Cp 9 Cp 10 Cf 11 12 St 13 YN 14 KT	For Km For Km For Km Nm-Thickness Geometry for bending strength Elustic coefficient Surface Condition Geometry for pitting resistance AGAM Bending Strength Stress cycle (For bending strength Tempurature Reliability	X X X X X X X X X X X X X X X X X X X	x x x x x x x	0.01135000 0.5583 1.57515000 0.42 10 1 0.42 10 1 0.18029313 301.5 1.11966235 1.1196625 1.1196655 1.1196655 1.1196655 1.11966555 1.11966555 1.1196655555 1.11966555555555555555555555555555555555	For Commerical, closed Gearing Set to 1 for now Fayne 14.6 Agaynt (table 14.8) Agayngton Mga 41:07 C yc ks		
16 Cpf 56 Cma 66 Km 76 KB 79 KB 79 Cp 70 Cf 70 KB 70	For Km For Km Rm-Thickness Geometry for bending strength Elastic coefficient Surface Condition resistance Geometry for pitting resistance AGMA Bending Strength Stress cycle If or bending strength Tempurature.	X X X X X X X X X X X X X X X X X X X	x x x x x x x x	0.01135000 0.5583 1.57515000 0.42 10 1 0.42 10 1 0.18029313 301.5 1.11966235 1.1196625 1.1196655 1.1196655 1.1196655 1.11966555 1.11966555 1.1196655555 1.11966555555555555555555555555555555555	For Commercial, closed Graning Set to 1 for now Figure 14.6 Spot(h494) (table 14-8) Assumption Mpa 41:072 cycles Assumption Assumption		
H Cpf 5 Cma 6 Km 7 KB 90 Cp 90 Cp 90 Cf 11 1 12 St 13 YN 14 KT 15 KB	For Km For Km For Km Nm-Thickness Geometry for bending strength Elustic coefficient Surface Condition Geometry for pitting resistance AGAM Bending Strength Stress cycle (For bending strength Tempurature Reliability	X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x	0.01130000 0.5038 1.57515000 0.42 10 1 0.18020911 0.18020911 0.18020911 0.18020911 0.111965355 1.111965355 1.119655555 1.1196535555555555555555555555555555555555	For Commercial, closed Graning Set to 1 for now Figure 14.6 Spot(h494) (table 14-8) Assumption Mpa 41:072 cycles Assumption Assumption		
44 Cpf 55 Cma 69 Km 69 Km 69 Cp 90 Cp 10 Cf 11 C 12 St 12 St 13 VN 14 KT 15 KR 15 SK 15 SK	For 6m For 6m Load DathAution Ben Thekens Geometry for bending strength Eastic coefficient Surface Condition Geometry for pitting relation of AdMA Nenning Strength Streac cycle if for bending drength Tempurature Relability AGMAS Anning temptations of the strength AGMAS anning temptations of the strength	X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x	0.01130000 0.5038 1.57515000 0.42 10 1 0.18020911 0.18020911 0.18020911 0.18020911 0.111965355 1.111965355 1.119655555 1.1196535555555555555555555555555555555555	For Commercial, closed Gearing Set to 1 for now Figure 34.6 seg1(MP4) (table 14.8) Ausurghton Ausurghton Ausurghton Ausurghton Mga Ausurghton Mga Ausurghton		
4 (ppf 5 Cma 6 Km 9 KB 9 Cp 9 Cp 9 Cp 9 Cp 9 Cp 9 Cp 9 Cp 9 Cp	For Km For Km Load Datritution Bam-Thickness Geometry for bending strength Listics coefficient Surface Coefficient Geometry for poting resistance Geometry for bonding strength Streas cx of the bonding strength Temparature Reliability AGMAS.surface Endwarance strength Hardness Natio	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X	0.01150099 0.5585 1.57515099 0.42 0.42 1.042 1.042 1.042 1.042 1.1966255 1.196625 1.196655 1.196655 1.1966555 1.19665555555555555555555555555555555555	For Commercial, closed Gearing Set to 1 for now Figure 34.6 seg1(MP4) (table 14.8) Ausurghton Ausurghton Ausurghton Ausurghton Mga Ausurghton Mga Ausurghton		

Figure 19: Gear equations/factor of safety requirements

Descriptions	1020 CD Steel D1	Untis and Assumptions
Diameter(Location of gear)	30	mm
W(t)2-3	3546.107208	
W(r)2-3	1290.677471	
W(t)4-5	2992.027957	
W*4-5	1089.009116	
Total Force (2-3)	3773.69	
Total Force (4-5)	3184.05	
Gear 3 Diameter		mm
Gear 4 Diameter	64	mm
T on shaft Between Gear 3	95744.89461	
T in Shaft Between Gear 4	95744.89461	
Length 1/3		mm (assumption)
Length 2/3		mm (assumption)
Full Length	60	mm (assumption)
		(N) Assume total Length = 60mm, gear 4 to
Reaction_B		point A = 30mm, Gear 3 to point A = 10mm
Reaction_A	1421.761902	(N)
Moment @ Gear 3	21326.42853	N-mm
Monent @ Gear 4	9579.246856	N-mm
Max Moment	21326.42853	N-mm
Max Stress (Sigma)	11.0363876	Mpa
Max Shear (TAU)	19.21924535	Mpa
Kt	1.5	Assume generous fillet radius
Kts	1.7	Assume generous fillet radius
Ka	3.583113211	
Kb	0.86172702	
Kc	0.59	Assumption (torsion)
Kd	1	Assumption
Ke		Assumption for 99% reliability
r/d		From table
q		From Graph 6-26
Qs	0.72	
r		mm
Kf	1.335	
KFs	1.504	
Sut	0.468843496	
Se'	0.234421748	GPa
A	0	
В	249.4158731	
Se	0.347619842	
Smalld, (shoulder point 1)	9.217642637	mm
nf	50.75368397	
T_max	11.37317187	Mpa

Figure 20: Shaft equations/factor of safety requirements

Rpm Reversed	Torque (n*mm)	rpm - mph	Tire Dimensions	
557.8125				11.5
1487.5	22184.93661	101.7819495	Height (in)	23
1487.5	22184.93661	101.7819495	Wheel Diameter (in)	10
2800	0.005326515	191.589552	Width (in)	7
			Circumference	72.256631
			Circuference to miles	0.00114041
	Vehicle Weight	500	Assume (lbs)	
	Vehicle Mass	15.52795031	slugs	
	initial speed	0	mph	
	final speed	38.16823106	mph	
	time	0.002777778	assume 10 sec (hr)	
	Acceleration	1.706272907	(m/s)^2	

Figure 21: Equations to obtain required speed