2023 SAE Aero Design Competition Micro Class

> Jacob Cabanyog Devin duBois Gabriela Liquidano Iain Pettit Alexander Vierhout Alec Zodrow

NORTHERN ARIZONA UNIVERSITY

Meet the Team

Project Lead Iain Pettit

CAD Engineer Jacob Cabanyog

Logistics Manager Alexander Vierhout

Testing Engineer Devin Rossi duBois

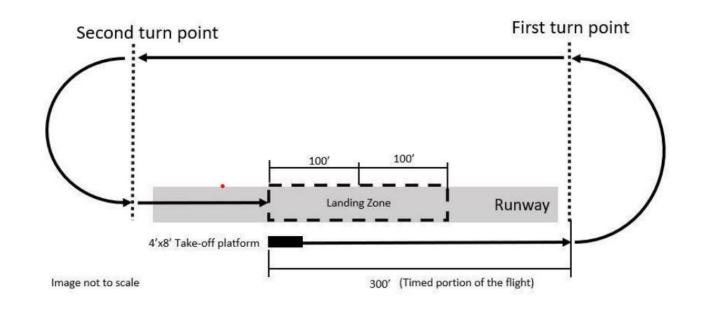
Financial Manager Gabriela Liquidano

Manufacturing Engineer Alec Zodrow

Project Client - David Willy

Project Sponsors: W.L. Gore NAU College of Engineering, Informatics, and Applied Sciences Terrance Hall Research Award 2

Project Description



Problem Statement

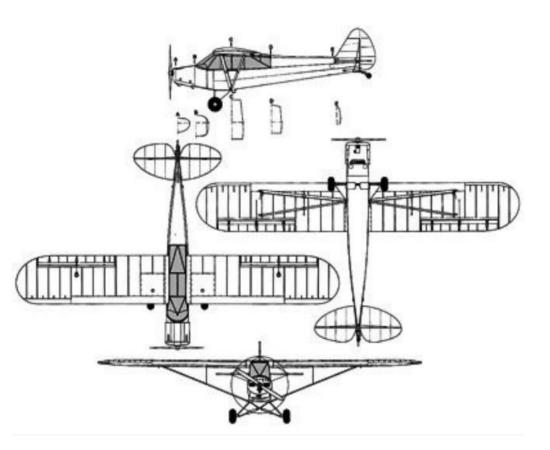
- Design a battery powered R.C aircraft to model real-world cargo planes
- Maximize Flight Speed
- Maximize Weight/Volume Cargo Capacity

Competition Design Constraints:

- 450 W maximum power consumption
- 3' maximum wingspan
- 8' takeoff distance
- 200' landing Distance

Project Requirements: CRs

Customer Requirements ranked from most important to least important:

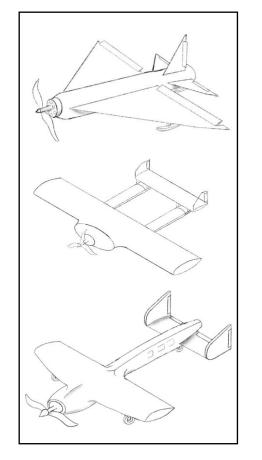

- 1. Competition Ready
- 2. High Speed
- 3. Cost Effective
- 4. Stable Flight
- 5. Lightweight
- 6. Ability to Land
- 7. High Maneuverability

- 8. Short Takeoff Distance
- 9. Payload Capacity
- 10. Repairable
- 11. Durable

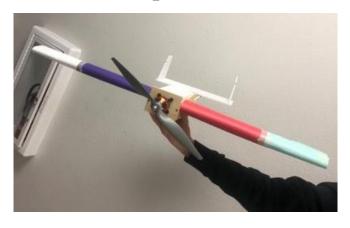
Project Requirements: ERs

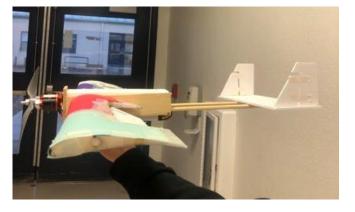
5

- 1. Minimize Weight
- 2. High Thrust to Weight Ratio
- 3. High Lift to Drag Ratio
- 4. Maximize Power Consumption
- 5. Maximize Stress Tolerance
- 6. Minimize Total Cost


Design Decision Matrix

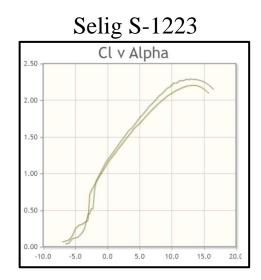
Reduce Total Cost	1								NAU SAF	Aero 2023	1				
Reduce Total Weight		+								/2022	1				
Increase Max Stress		-	-								1				
High Thrust to Weight Ratio		+	+	-	i i										
High Lift to Drag Ratio	e			+		P									
		+					Ê.								
Increase Total Part Count			-	-	-+	+		f							
Maximize Power Consumption	6	-	-	Taskai					· · · · · · · · · · · · · · · · · · ·	Cura	town Onloten E			1	
		Technical Requirements			e	Customer Opinion Survey				4					
Customer Needs	Customer Weights	Reduce Total Cost	Reduce Total Weight	Increase Max Stress	High Thrust to Weight Ratio	High Lift to Drag Ratio	Increase Total Part Count	Maximize Power Consumption	l Poor	5	3 Acceptable		5 Excellent		
High Maneuverability	4	3	9	0	9	9	0	1			С	A	B	Key	Project
Stable Flight	13	9	3	3	9	9	0	3				В	A	A	Georgia Tech 20
Lightweight	17	9	9	3	9	0	9	3		C	В		A	В	Texas A&M 2020
Durability	10	9	9	9	1	3	3	1		C	Α	В		С	NAU 2020
Cost Effective	10	9	9	3	3	3	0	9		Α	В	C			
Ability to Land	7	1	3	3	9	9	3	0		С	В		Α		
Competition Ready	19	3	9	9	9	9	9	9			С		AB		
Short Takeoff	12	1	9	1	9	9	0	9			BC	Α			
Payload Capacity	3	3	9	9	3	3	1	9	A		С	В			
Repairability	5	9	1	9	1	1	9	0		C	A B				
High Speed	2	1	9	3	9	9	0	9	С		Α	B			
Technical Requirement Units		s	Lbs	PSI	Lbs/Lbs	Lbs/Lbs	#	w							
Technical Requirement Targets		600	4	200	1:1.6	4:5	5	450							
Absolute Technical Importance		594	749	531	655	608	318	483							
Relative Technical Importance		4	1	5	2	3	7	6							

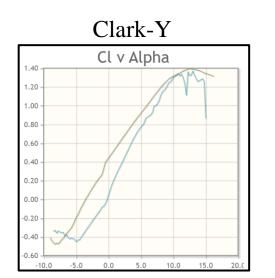

Project Starting Point



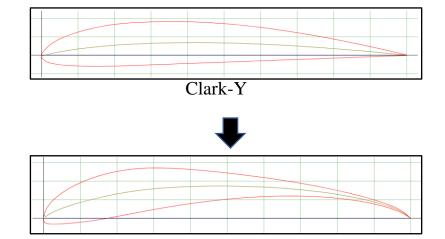
Proof of Concept (First Iteration)

First Flight Test




8

Airfoil Analysis

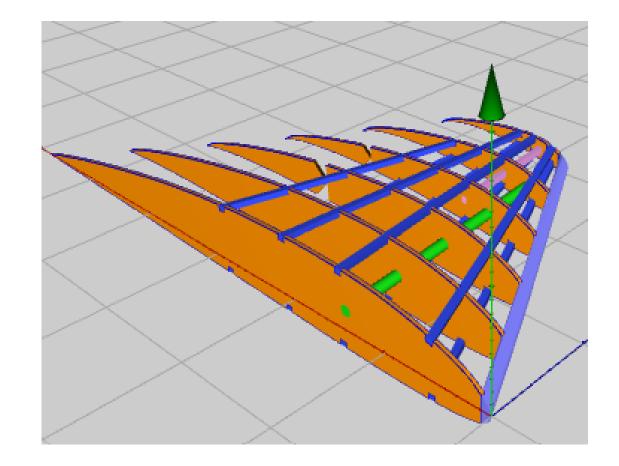

- High Camber
- High C_L for low speed aircrafts

- Low Camber
- Allowed room for internals
- Easily Manufactured

*Design Utilizes an interpolation between the above airfoils geometries to construct the frame

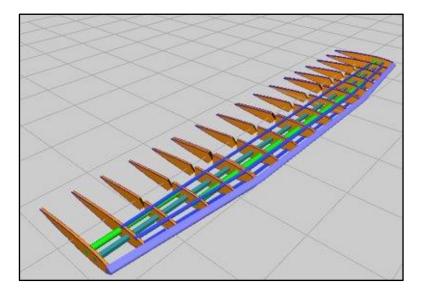
<u>Critical Reynolds Numbers:</u> Takeoff ~ 20,000 Cruising ~ 190,000

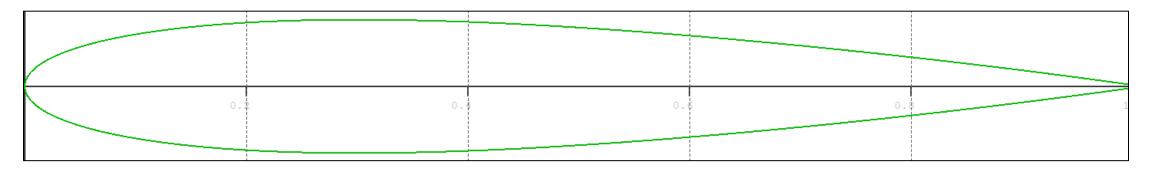
Selig S-1223


Wing Dimension Summary

Initial Dimensions

- Wingspan = 33 inches
- Average Wing Chord = 17.6 in
- Planform Area = $580.2 in^2$


• Aspect Ratio
$$= \frac{span^2}{area} = 2.23$$



Horizontal Tail Selection

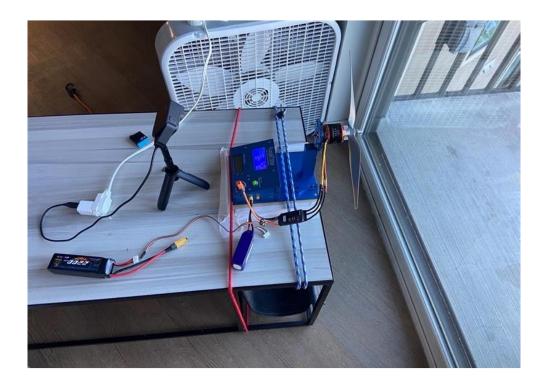
- NACA 0012 Airfoil
- Aspect Ratio: 1.6
- Planform Area: 157.5 in^2
- Flap Chord: 62%
- Flap Span: 90%
- TVC: 0.38



Vertical Tail Selection

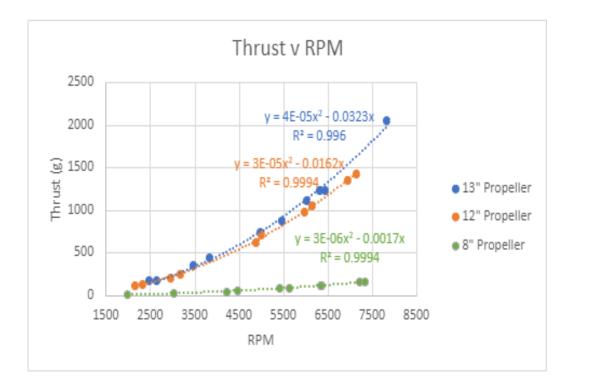
- NACA 0010 Airfoil
- Planform Area: 22.5 in^2
- Double Fin Geometry
- TVC: 0.05

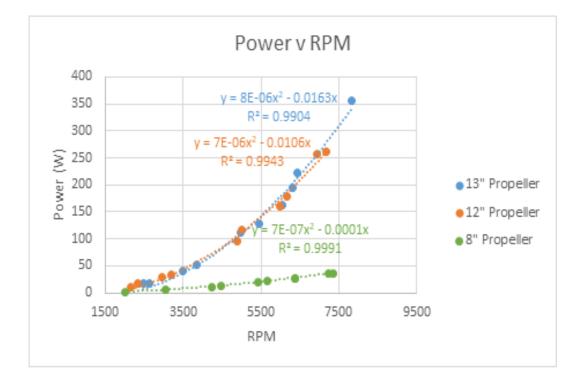
Propulsion Testing



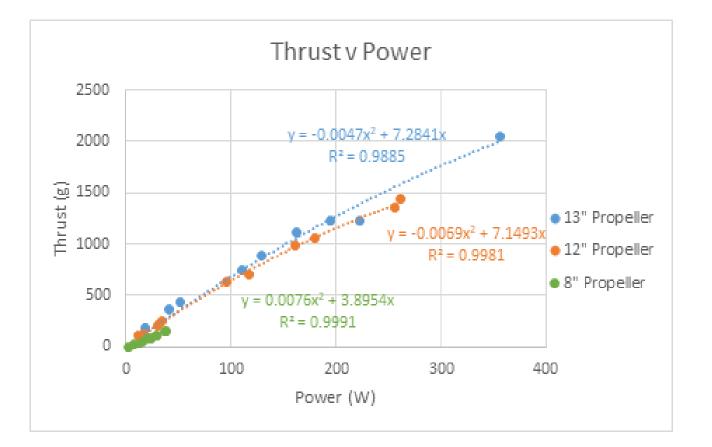
Static Propulsion Testing Results

- From Three different sized propellers
- Thrust vs. RPM
- Thrust vs. Power
- Power vs. RPM
- COT and COP


Measurement Devices


- Dynamometer
- Tachometer
- GoPro

Propulsion Testing Results



Power vs RPM

Thrust vs RPM

Propulsion Testing Results Cont.

Thrust vs Power

Propulsion Final Results Cont.

Propeller	Avg Coefficient of Thrust (C_T)	Avg Coefficient of Power (C _P)
8" Propeller	0.0456	0.0722
12" Propeller	0.0853	0.0607
13" Propeller	0.0703	0.0385

Takeoff Calculations

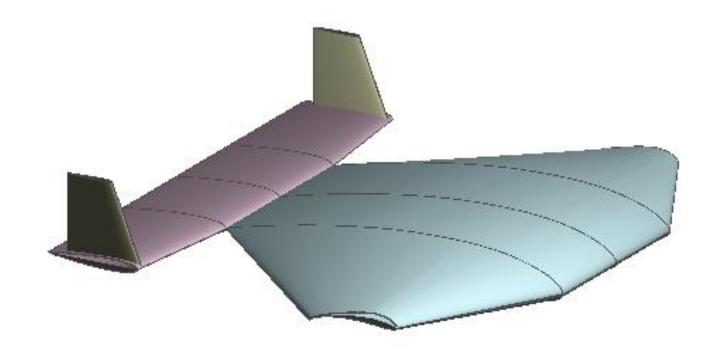
Distance to Takeoff:

$$D_{takeoff} = \frac{1.21 * \frac{W_{empty}}{A_p}}{g * \rho * \frac{T}{W_{empty}}}$$

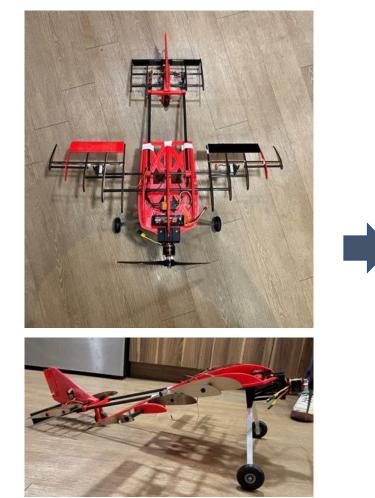
Weight	Thrust	Thrust-to-Weight Ratio
2.8 lbs	6.7 lbs	2.39

 $D_{takeoff} = 7.9 \text{ ft}$

Payload Prediction Graph



Stability and Control

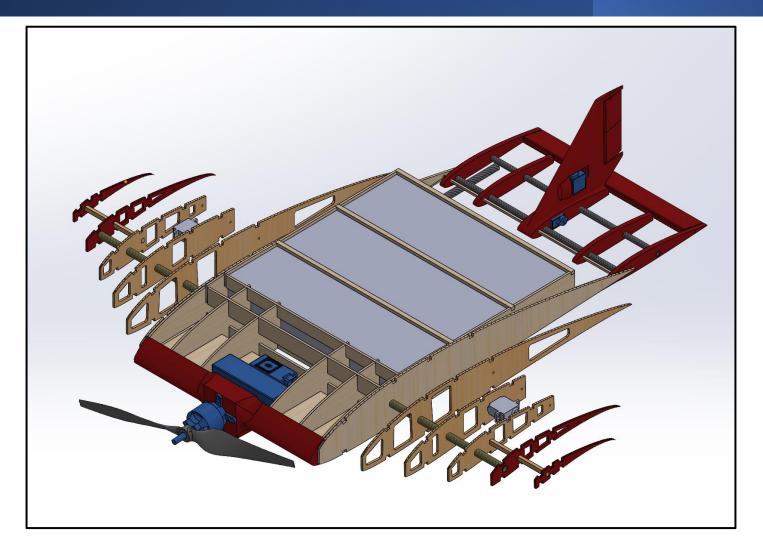

- COG: 6.1 in
- NP: 7.97 in
- MAC: 19.4 in
- Static Margin: 9.6%

Construction Process

Bill of Materials

Starting Budget: \$3000

NAU CEIAS: +\$1000


Terrance Hall Research Award: +\$2846

> Total: \$6846

Item	Cost	Quantity	Total Price	Description	Primary Vendor/ Manufacturer
Sport Propeller 16x10 - 3 Blade	\$5.13	1	\$5.13	Main Motor Propeller	22F NAU SAE Team
Landing Gear Rear Wheel	\$6.87	1	\$6.87	The wheel for our rear langing gear mount	Amazon
Landing Gear Front Wheels	N/A	2	Donated	The wheels for our front langing gear mount	22F NAU SAE Team
Spektrum AR620 Receiver	N/A	1	Donated	"Motherboard" of plane	22F NAU SAE Team
Spektrum DX8E Transmitter	N/A	1	Donated	Plane Controller	22F NAU SAE Team
Avian 45 Amp Brushless Smart ESC, 3S-6S	\$59.99	1	\$59.99	Throttle controller for main motor	Horizon Hobby
Avian 4250-800Kv Outrunner Brushless Motor	\$89.99	1	\$89.99	Main Motor	Horizon Hobby
Spektrum 4 cell LiPo battery	\$64.99	1	\$64.99	Main Power Source	Horizon Hobby
Servo Motors	\$10.20	4	\$40.80	Control Surface motors	Horizon Hobby
SAE Power Limiter - Mirco	\$85.00	1	\$85.00	Competition required Watt Limiter	Neumotors
Red Arming Plug	\$8.99	1	\$8.99	Competition required "kill switch"	Gator RC
LED Kit	\$2.50	1	\$2.50	Indicating direction of flight	Home Depot
Fasteners	\$4.16	2	\$8.32	Various bots, screw, and nuts	Home Depot
Carbon Fiber Rods - 10mm x 500mm	\$11.34	4	\$45.37	Main Support Beams	Grainger
Carbon Fiber Rods - 8mm x 500mm	\$6.15	4	\$24.63	Main Support Beams	Grainger
Ultra-Coat	\$20.00	2	\$40.00	The wrap that will encompas the plane body	Hobby Bench
4 Pin Spinner 1-1/2", yellow	\$9.00	1	\$9.00	Safety cap for motor	Hobby Bench
Balsa Wood Airfoils	N/A	24	\$25.00	Main Wing, Tail Wing, and Elevator ribs	NAU Idea lab
Balsa Wood Fuselage Components	N/A	6	\$20.00	Balsa wood plates for housing cargo and internal components	NAU Idea lab
Control Surfaces	N/A	5	\$7.50	All control surfaces for the planes (ailerons)	3D Printing
Vertical Tail Wing	N/A	1	\$1.50	The Vertical Tail Wing (rudder)	3D Printing
Front Motor Mount	N/A	1	\$1.00	Mounting design to hold the motor in place	3D Printing
Mounting Brackets	N/A	4	\$6.50	Carbon Fiber/Nylon joints for main support beams	3D Printing
Front Landing Gear Mount	\$8.97	1	\$8.97	Mounting design to hold the front landing gear to the plane	Hobby Bench
Rear Landing Gear Mount	N/A	1	\$5.00	Mounting design to hold the rear landing gear to the plane	3D Printing
Weight Plates	N/A	2	Donated	Weighted plates for competition scoring	Nau Machine Shop 21
		Total	\$567.05		

Final Design

- 1. J. J. D., Aircraft Performance and Design. Boston, Mass: McGraw-Hill Higher education, 2012.
- 2. Daniel P. Raymer, Aircraft Design: A Conceptual Approach, 2nd ed., AIAA Education Series, American Institute of Aeronautics and Astronautics, Washington, 1992.
- 3. "Computational Fluid Dynamics," *Computational Fluid Dynamics an overview / ScienceDirect Topics*. [Online]. Available: https://www.sciencedirect.com/topics/materials-science/computational-fluiddynamics#:~:text=Computational%20fluid%20dynamics%20(CFD)%20is,and%20energy)%20governing%20fluid%20m otion. [Accessed: 05-Feb-2023].
- 4. "Primary flight control surfaces and dual purpose flight control surfaces of a fixed-wing aircraft," *Aircraft Systems*. [Online]. Available: https://www.aircraftsystemstech.com/p/flight-control-surfaces-directional.html. [Accessed: 05-Feb-2023].
- 5. W. F. Durand, Aerodynamic theory. Internet Archive, 1934.
- 6. R. K. Schmidt, The design of Aircraft Landing Gear. SAE International, 2021.
- "Aileron design Chapter 12 design of Control Surfaces aero.us.es." [Online]. Available: http://aero.us.es/adesign/Slides/Extra/Stability/Design_Control_Surface/Chapter%2012.%20Desig%20of%20Control%20 Surfaces%20(Aileron).pdf. [Accessed: 05-Feb-2023].

- S. Gudmundsson, "The anatomy of the fuselage," General Aviation Aircraft Design (Second Edition), 14-Jan-2022. [Online]. Available: <u>https://doi.org/10.1016/B978-0-12-818465-3.00012-4</u>. [Accessed: 23-Oct-2022].
- 9. P. J. Pritchard, J. C. Leylegian, R. Bhaskaran, J. W. Mitchell, and R. W. Fox, Fox and McDonald's introduction to Fluid Mechanics, 9th edition. Wiley, 2015.
- 10. B. Dunbar, "The four forces of Flight," NASA. [Online]. Available: <u>https://www.nasa.gov/audience/foreducators/k-4/features/F_Four_Forces_of_Flight.html</u>. [Accessed: 12-Oct-2022].
- 11. "Handbooks & Manuals," Handbooks & Manuals | Federal Aviation Administration. [Online]. Available: <u>https://www.faa.gov/regulations_policies/handbooks_manuals</u>. [Accessed: 23-Oct-2022].
- Brezina and S. Thomas, "Measurement of static and dynamic performance characteristics of Electric Propulsion Systems," 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, May 2013.
- 13. Daniel P. Raymer, Aircraft Design: A Conceptual Approach, 2nd ed., AIAA Education Series, American Institute of Aeronautics and Astronautics, Washington, 1992.
- 14. M. Bedding, "Control surface flutter, balance, and Vne," *Motion RC*, 13-Oct-2020. [Online]. Available: https://www.motionrc.com/blogs/motion-rc-blog/control-surface-flutter-balance-and-vne. [Accessed: 05-Feb-2023].

Thank you SAE