Boeing Drone: First Prototype Demo

Project 03

Team Hi-Jacks

Damien Brothers, Dante Faria, Jay Khunt, Colby Murphy, and Thomas Schreiber

Project Description

- Design, analyze, and manufacture a 3D printed drone frame that minimizes weight and maximizes flight time using set commercially available components.
 - Sponsor: Boeing
 - Design material optimization
 - Thrust to weight ratio
 - Stress Testing

Design Description

- Current Design
 - Flimsy
 - Discs will be different material
 - Below weight requirement
 - Increased thrust to weight ratio

Figure 1: Full prototype with subsystems

Design Requirements

• Customer Requirements:

- Lightweight\Optimized Thrust to Weight Ratio
- Optimized Component Location
- Low Cost
- Minimal Hardware
- Flight Capable
- Easy to Manufacture
- Strong Frame

Figure 2: Prototype CAD

Design Analysis:

Analysis Done in CAD –

- Weight
 - Found from proposed material density and prototype volume
 - \circ 0.96lbs for simple prototype
- Positioning
 - Parts for flight were dimensioned and CAD geometry was adjusted appropriately
 - Propellers are placed D/3 distance from other parts

\nsys

Future Analysis –

- Stress
- Material Durability and Fatigue
- Crash Simulation
- Propeller Aerodynamics
- Cost

4, Damien Brothers

Prototype

• Total Cost:

\$66.49*taxes included*

- Total Weight of 3D Printed Parts:
 501gm → 1.105lbs
- Total Configured Weight:
 - 435gm \rightarrow 0.96lbs

Figure 3: Drone Frame Prototype

5, Dante Faria

Prototype BOM

Table 1: Cost and Weight of Prototype Airframe

Part	Weight [gm]	Cost	Quantity	Weight (total)	Cost (total)
Plate no key	63	\$8.76	2	126	\$17.52
Plate with key	61	\$8.64	1	61	\$8.64
Arm	27	\$4.32	4	108	\$17.28
Spacer	2	\$1.44	4	8	\$5.76
Bolt	28	\$0.69	4	112	\$2.76
Nut	3	\$0.11	4	12	\$0.44
Washer	2	\$0.17	4	8	\$0.68
	Part Plate no key Plate with key Arm Spacer Bolt Nut Washer	PartWeight [gm]Plate no key63Plate with key61Arm27Spacer2Bolt28Nut3Washer2	PartWeight [gm]CostPlate no key63\$8.76Plate with key61\$8.64Arm27\$4.32Spacer2\$1.44Bolt28\$0.69Nut3\$0.11Washer2\$0.17	PartWeight [gm]CostQuantityPlate no key63\$8.762Plate with key61\$8.641Arm27\$4.324Spacer2\$1.444Bolt28\$0.694Nut3\$0.114Washer2\$0.174	PartWeight [gm]CostQuantityWeight (total)Plate no key63\$8.762126Plate with key61\$8.64161Arm27\$4.324108Spacer2\$1.4448Bolt28\$0.694112Nut3\$0.11412Washer2\$0.1748

Not including tax

Design Validation: FMEA

Modes of Failures

- Keys on arms to hold in place
 - Cracking under stress
- Arms themselves
 - Not the correct length
 - Spacer hole too small for ¼" bolt
- Circular Discs
 - Warping
 - Small Cracking
 - Holes for 1/4" bolts too small
- Spacers
 - Center hole too small for 1⁄4" bolts

- Test Procedures
 - Stress Analysis
 - Cost Analysis
 - Material Durability and Fatigue
 - Propeller Analysis
 - Crash Analysis

This Photo by Unknown Author is licensed under <u>CCBY-SA</u>

Design Validation: FMEA

Table 2: Drone Frame Risk Assessment

Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Potential Causes and Mechanisms of Failure	RPN	Recommended Action
1	Impact Fracture	Flying debris and inoperative	Impact Loading	56	Increase plate infill
2	Impact Fracture	Flying debris and inoperative	Impact Loading	56	Increase plate infill
3	Impact Fracture and Low-Cycle Fatigue	Flying debris and erratic operation	Impact Loading	63	Increase arm thickness and key size
4	Impact Fracture	Poor appearance	Overstressing	100	Increase spacer thickness
5	Impact Fracture	Flying debris and inoperative	Impact Lodaing	105	Have spare backup parts
6	Impact Fracture	Erratic operation	Overstressing	18	Have spare backup parts
7	Impact Fracture and Ductile Rupture	Loss of stability	Overstressing	18	Have spare backup parts

Design Validation: Methods

- Stress
 - ANSYS
 - E-Calc
 - Hand calculations
- Material
 - Tensile Stress Tests
 - Compressive Stress Tests
 - Instron Device

Cost

- Weight analysis
- Material cost
- Crash
 - E-Calc
 - Hand calculations

Schedule

11/6 Final Presentation outline

11/7 @ 2PM NAU students share Final Presentation and Report with the Boeing team

11/16 Final Report outline, BOM and CAD design

12/4 Final Prototype and Website check

Budgeting

- Total budget approved: \$5300
- To be purchased:
 - Cost of the required parts for manual flight: \$770.31
 - Body can have variable cost depending on material use and method of building. Maximum cost for 3D Printing at NAU MakersLab with PLA plastic: \$340.
 - If considering to build drone with all parts mention it may cost up to \$1194.28
- Money Spent:
 - First Prototype: \$66.49 (501gm → 1.105lb)
 - NAU Capstone Fee: \$265
- Budget Remaining: \$4968.51

Part #	Part Name	Qty	Descriptio n	Functions	Material	Dimensions (in)	Cost (\$)
1	Body	1	Body	Body	PLA		340
2	Hobbytown 40A ESC	4	Speed Controller	Control motor speed			55.99
3	Gemfan 9045 3-Blade Prop	4	Propeller	Provide lift	Glass Fiber Nylon	9	15.98
4	Battery Charger	1	Battery Charger	Charge battery			47.97
5	Battery Connector	1	Batter Connector	Connect battery to electronics			8.99
6	Socokin 6S Lipo Battery	1	LiPo Battery	Provide power	Lithium Polymer	6.06 x 2.03 x 1.89	73.99
7	iFlight XING 2814 880KV Motor	4	Motor	Spin propeller	Copper	Stator L: 0.551 Stator D: 0.787 Shaft D: 0.197	154.4
8	Flysky FS-i6X 2.4GHz RC Trans/Receiver	1	Remote Control	Control drone		6.85 x 3.5 x 7.48	72.99
9	Slamtec RPLIDAR	1	LIDAR Unit	Light detection and ranging		5.1 x 3.9 x 3.1	99.99
10	Arducam PTZ Camera	1	Camera Unit	First person control and recording			124.99
11	2-Axis Brushless Gimbal	1	Camera Gimbal	Stabilize camera		3.15 x 3.15 x 3.15	69.99
12	NVIDIA Jetson Nano GPU	1	GPU	Process visual data			129
Total Cost Estimate:							
					Cost of I	770.31	

Required component for footprint on design, cannot be altered (not required to purchase) Required for manual flight, can be altered with similar component if unavailable

Thank You

Questions?

Refereneces

[1] "Research guides: Creating at Cline Library: 3D Printing," 3D Printing - Creating at Cline Library -Research Guides at Northern Arizona

University. [Online]. Available: <u>https://libraryguides.nau.edu/creating/3D-printing</u>. [Accessed: 09-Oct-2022].

[2] G. Paulsen, "On-demand webinar: Best practices for metal 3d printing through Binder jetting," Xometrys RSS, 24-Jan-2022. [Online]. Available: https://www.xometry.com/resources/blog/on-demandwebinar-3d-printing-metal-binder-jetting/. [Accessed: 09-Oct-2022].

[3] G. Paulsen, "On-demand webinar: Everything you need to know about vapor smoothing 3D prints," Xometrys RSS, 20-Jan-2022. [Online]. Available: https://www.xometry.com/resources/blog/on-demand-webinar-vapor-smoothing-3d-prints/. [Accessed: 09-Oct-2022].

[4] S. Ngoh, "On-demand webinar: A deep dive into SLS 3D printing and high-performance materials," Xometrys RSS, 20-Jan-2022. [Online]. Available: https://www.xometry.com/resources/blog/on-demandwebinar-deep-dive-sls-3d-printing/. [Accessed: 09-Oct-2022].

[5] S. Ngoh, "On-demand webinar: When to choose 3D printing vs. machining," Xometrys RSS, 09-May-2022. [Online].

Available: https://www.xometry.com/resources/blog/on-demand-webinar-3d-printing-vs-cnc-machining/. [Accessed: 09-Oct-2022].

References

[6] "Articles," Fictiv. [Online]. Available: https://www.fictiv.com/articles. [Accessed: 09-Oct-2022].

[7] "Research guides: Creating at Cline Library: 3D Printing," 3D Printing - Creating at Cline Library - Research Guides at Northern Arizona University. [Online]. Available: https://libraryguides.nau.edu/creating/3D-printing. [Accessed: 09-Oct-2022].

[8] "Ansys Learning Hub - learn from experts at your own pace." [Online]. Available:

https://www.ansys.com/services/ansys-learning-hub. [Accessed: 10-Oct-2022].

[9] "Introduction to Ansys (Part1) : Starting Ansys Workbench," YouTube, 24-Aug-2019. [Online]. Available: https://www.youtube.com/watch?v=C8WvCQpzT2A. [Accessed: 09- Oct-2022].

[10] "Introduction to Ansys (PART2) : Creating your first 3D model," YouTube, 24-Aug-2019. [Online]. Available: https://www.youtube.com/watch?v=FwKkjAr9Kbk. [Accessed: 09- Oct-2022].

[11] "Introduction to Ansys (PART3) : Starting the mechanical interface," YouTube, 24-Aug2019. [Online]. Available: https://www.youtube.com/watch?v=6QaFX1CG-ZE. [Accessed: 09-Oct-2022].

[12] "Introduction to stress analysis | ansys innovation courses." [Online]. Available:

https://courses.ansys.com/index.php/courses/stress-analysis/lessons/lesson-2-about-stressanalysis/. [Accessed: 10-Oct-2022].

[13] D. Durston, "SolidWorks equations - create more intelligent parts". YouTube, 2013. Available: https://www.youtube.com/watch?v=r0IGDwCQKqU. [Accessed: Oct-9-2022].

References

[14] R. Wood, "Solidworks Design Tables Made Easy," *GoEngineer*, 21-Mar-2022. [Online]. Available: https://www.goengineer.com/blog/solidworks-design-tables-made-easy.
[Accessed: 09-Oct-2022].
[15] S. Durksen, "Using a multiple unit system in Solidworks equations," *The Javelin Blog*, 14-May-2015. [Online].
Available: https://www.javelin-tech.com/blog/2015/05/multiple-unit-system-equations-video/. [Accessed: 09-Oct-2022].