SAE Aero Competition

Aiden Hudson Dylan Morgan Ryan Stratton Gajaba Wickramarathne

Project Description

- SAE Aero Competition
- Improve upon previous designs
 - Stability and controllability
 - Avoid crashing
 - Power issues

Figure (1): SAE Logo [1]

Figure (2):Last years design [2

Slide 2

RJS1	THoughts Aiden I changed the colors Ryan J Stratton, 2/21/2021						
AH1	Looks good						

Aiden Hudson, 2/21/2021

RJS2 Glad you dont hate it that off blue was killing me Ryan J Stratton, 2/21/2021

Black Box

Concept Generation

- To better understand our decisions, lets first go over competition limitations
 - Aircraft must carry a soccer ball
 - Additional weight helps
 - Take off in less than 100 ft of runway
 - Land in less than 400 ft of runway
 - Must complete flight in less than 120s
 - Wingspan needs to be less than or equal to 10 ft
 - 1000 W power limiter

Flight Score =
$$120 * \frac{3*S+W_{Payload}}{b+1}$$

b+L_{Cargo}

S = Number of Soccer balls $W_{Payload} = Weighted Paylod (lbs)$ $L_{cargo} = Length of Cargo Bay (inches)$ b = Aircraft Wingspan (inches)

Competition Main Limitation

- When designing the aircraft our biggest limiting factor is power per pound ratio
 - 50-70 watts per pound; Minimum level of power for decent performance, good for lightly loaded slow flyer and park flyer models
 - 70-90 watts per pound; Trainer and slow flying scale models
 - 90-110 watts per pound; Sport aerobatic and fast flying scale models
 - Our design is limited to 55 lbs

Figure (3): Rc airplane weights less than 0.5 lbs and has a 25-watt motor [3]

Fuselage Considerations

- Battery Size and Weight
- Payload Size
 - ~8.6-9.0 in. Diameter
- Scoring
- Parameters
 - Must fully enclose payload

Figure (4): Battery Dimensions

Fuselage Concept Designs

Figure (5): Glider Fuselage

- Glider Design
 - Light, but complex
- Icon Design
 - Light and compact, but made for sport
- Light GA Design
 - Simple, but long fuselage

Figure (6): Icon A5 Fuselage

Figure (7): Light GA Fuselage

Wing Concept Design

Figure (7): Straight Lead Tapered Wings Gajaba Wickramarathne, 2-21-21, SAE Aero #4 Figure (8): Glider-Inspired Wings

Wing Concept Design

- Wider and Slimmer wings than conventional aircraft designs.
- High aspect ratio
- Maximizes induced drag
- Increased volume of Air spinning behind the wings = Decreased air velocity (relative)
- Less air velocity (relative) = Decreased energy output
- Decreased energy output = Higher efficiency

- Initial airfoil category : NACA 0004
- Concept Airfoil : Custom spline based on NACA 0004 airfoil
- Chord Length (Cl) : 1m
- Total Wingspan : 2m
- Simulation Temperature : 25 deg C
- Simulation Altitude : 304.8m

Preliminary airfoil analysis : Initial Calculations

Reynolds number calculator

Applications

(176)

Figure (10): Screen Shot of Airfoil tools website [4]

Figure (11): Airfoil Dimensioning [6]

Figure (12): Coefficient Charts [6]

Figure (13): Boundary Layer Simulation [6]

Figure (14): Pressure simulation [6]

Gajaba Wickramarathne, 2-21-21, SAE Aero #4

16

Preliminary airfoil analysis : Wing design (work-in-progress)

▶ QBlade v0.963 64	bit					- 0	×
File View Blade/F	Rotor Options	7					
🗋 🖷 🗄		\bigcirc	360°	-Mm- /	人 📝 🛧 📴 🌮 🖽 🦏		
Rotor Blade							8
New Blade	•						
HAWT					^ø New Blade		
3D View Controls					~		8
Et to Scroon	haw Poter	urfacoc	Foil Out TE/LE (Lill Colle			8
Picto Scieen 3		surfaces	Honotac Telec	rii Pois	(MARCHAR STAR)		8
GL settings P	rerspective Co	iorainatês Fo	oil Positions Foil Nan	165			
Blade Data							8
New Blade	es hub endius		Diada Dant Coordinate				8
3 blades and 0.20 h	Characteria)	×.	j blade Root Cool dinate				8
Pos (m)	Chord (m)	IWIST	FOII	Polar			
1 0	0.2	0	NACA 0004	11_Re1.000_M0.0			8
2 0.5	0.16	0	NACA 0004	T1_Re1.000_M0.(8
3 1	0.12	0	NACA 0004	T1_Re1.000_M0.0			
							8
<							
New		Edit		Delete			8
					×		
					Qbl	ade_airfoilanaly	sis*

Figure (15): Work-in-progress wing design (based on NACA 0004) [6]

Preliminary airfoil analysis : Findings and future work

- Trial-and-error is key
- Chord length calculation is not perfect
- Reynolds number is compromised due to above issue
- QBLADE analyzes airfoil based on Wind Turbines
- New software should be utilized
- Good progress based on the findings of the preliminary airfoil analysis

Tail Concept Designs

Figure (16): Conventional Tail

Figure (17): Cruciform Tail

Figure (18): T-Tail

Aiden Hudson, 2-21-21, SAE Aero #4

Landing Gear

- Wheeled option: \$46.35-57.22
- Skied Option: \$74.99
- Tail Dragger: \$28.35

Wheeled option		J JJ		
Part type	Rear Gear	Fixed Wheel	Landing Gear	2 3/4in wheels
Price	\$20.95	\$25.40	\$22.28	\$13.99
URL	https://www.dubro.com/collection	https://www.banggood.com/QTMc	https://hobbyking.com/en_us/carb	https://www.dubro.com/products
Skied Option				
Part type	Skis	Tail Skid		
Part type Price	Skis \$74.99	Tail Skid \$2.95		

Figure (19): Landing Gear Designs and Costs [7][8][9]

Electrical Requirements

- Unlike the airframe or landing gear there is no concepts to generate
- We are going to use off the shelf parts.
 - Time savings
 - Keep us from design our own components
 - Might not be most optimized for our use
 - There is a huge market for RC plane components

Figure (20): image of the components required for the RC plane [10]

Concept Evaluation

Design Matrix for SAE AERO

Criteria	Discription	Veight	Pushing Prop	Enlarged Belly for oversized cargo	Glider Design	
These are requirements from the competition rules. Ultimately to make the customer happy we need to perform well, and we do that by getting a good flight score at competition.	This better explains the criteria	How important is each criteria	A T	Sold State		
Ving span (under 10 ft)	Want to decrease for better score in competition	10	6	4	4	100
Increase Payload (max 55lbs)	The more payload we can carry the better the score	4	8	6	6	40
Soccer ball Payload	r ball Payload The more soccer balls we can carry the better our score		4	8	8	30
Uverall Veight (airframe veight - may 55lbs)	The lighter the airframe to more cargo we can carry, and the better out flight score will be	7	1	6	7	70
Taking off (less than 100 ft)	Probability that we can get this aircraft off the ground in less than 100 ft	10	4	4	4	100
Speed	While we will not be able to make something fast a sleek design will increase speed	6	9	3	7	60
Cargo Bay	The small our cargo bay the better our flight score	10	5	9	9	100
Easy of Construction	We plan on crashing more than once so a simple design that is easy to mass produce is more important than a complicated shape	8	3	5	9	80
Power (thrust)	Which design do we think we will get the most power out of i.e. effecentcy of the propeller	9	5	6	7	90

Weighted average	67.16%	76.12%	91.04%	670
------------------	--------	--------	--------	-----

Score is defined as a value 1 to 10 on how well it does in this criteria 10 being the best 1 being the worst Veighted average is defined as a mathmatical formula to illistrate the most important design alterniternative It will be scored as =(score ' weight)/(total score)

Dylan Morgan ,2-21-21, SAE Aero #4

Figure (21): Design Matrix for aircraft design

Figure (24): Top View of CAD Model

Aiden Hudson, 2-21-21, SAE Aero #4

Budget Set up

- A battery pack with a minimum capacity of 1000 mAh must be used for the radio system.
- The battery pack must be a LiPo or LiFE type battery.
- All Regular Class aircraft must use a 2015 V2 or newer version 1000 watt power limiter
- Required: 6 cell (22.2 volt) Lithium Polymer (Li-Poly/Li-Po) battery pack. Minimum requirements for Li-Po battery: 3000 mAh, 25c

Cost Analysis of Electrical Parts

Figure (26): Cost of components required for a RC plane [12]

Ryan Stratton, 2-21-21, SAE Aero #4

25

1.850.62

761.86

601.85

1,010.11

Max

Min

Middle

Average

Ś

Budget Planning

- Total Budget \$1500
- 60% Electrical Components
- 22.5% Fuselage and Wings
- 5% Landing gear
- 12.5% Prototyping
- Right now, the budget is looking on the tight side

(\$900)

(\$75)

(\$337.5)

(\$187.5)

Table 1: Cost of electronic Components

Bill of Materials (electronics)								
Parts	Quantity							
Transmitter	\$ 229.99	1						
Reciver	included	0						
ESC with built in BEC	\$ 109.99	1						
Motor	\$ 118.99	1						
Power Limiter	\$ 75.00	1						
Arming Plug	\$ 12.95	1						
Battery	\$ 129.99	1						
Servos	\$ 16.99	5						
	Total	\$ 761.86						

Cost Analysis of Fuselage and Wings

Figure (27): Cost of components required for the fabrication of an RC plane [11]

Schedule

SAE AERO capstone Schedule																			
SAE Aero Capstone																			
	Proj	ect Start:	Mon, 1,	/11/2021															
	Displ	av Week [.]	5		Fe	eb 8, 202	1	Fe	eb 15, 202	21	Feb 2	22, 2021		Mar 1, 2	021	P	/ar 8, 2	021	
	bispi	ay meek.		1	89	10 11 1	2 13 14	15 16	17 18 19	3 20 21	22 23 24	25 26 27	7 28 1	234	56	783	10 11	12 13 14	15
TASK	ASSIGNED TO	PROGRES S	START	END	мт	W T F	s s	мт	V T F	s s	м т v	TFS	s M	т и т	FS	s M 1	· w т	FSS	м
Week 12 Time Card	Team		3/29/2021	4/5/2021															
Week 13 Time Card	Team		4/5/2021	4/12/2021															
Week 14 Time Card	Team		4/12/2021	<mark>4/19/2021</mark>															
Week 15 Time Card	Team		4/19/2021	<mark>4/2</mark> 6/2021															
Team Time Line																			
Project leads determined for subsystems	Team		2/1/2021	2/1/2021															
Conceptual design of sub systems	Individual (subsystem leads)		2/8/2021	2/8/2021															
Talk to Perry wood about laser cutter	Team		2/16/2021	2/28/2021															
Get Re number calculated	Gajaba		2/16/2021	2/21/2021															
Get Electrical anylisis done	Ryan		2/8/21	2/11/21					-		-								-
Have Concept generation done	Gajaba and Aiden		2/18/21	2/18/21															
Do decision matrix	Team		2/19/21	2/19/21															
Have sub assemblies designed in CAD	Individual		2/21/2021	2/26/2021															
Start getting Website up to par	Ryan		2/21/2021	2/26/2021															
Start purchasing items to	Individual		3/8/21	3/8/21															
Evaluate all subsystems a	Team		3/22/21	3/22/21															

Figure (28): Sectioned Gantt Chart

References

[1] "SAE International," [Online]. Available: https://en.wikipedia.org/wiki/SAE_International. [Accessed 21 2 2021].

[2] S. A. 2. Team, "AERO_Regular_Presentation_2.pdf," 2020.

[3] "Sport Cub S 2 RTF with SAFE," Horizon Hobby , [Online]. Available: https://www.horizonhobby.com/product/sport-cub-s-2-rtf-with-safe/HBZ44000.html#. [Accessed 21 2 21].

[4] A. Tools, "Airfoil Tools," [Online]. Available: http://airfoiltools.com/. [Accessed 21 2 2021].

[5] N. A. A. S. Administration, "Speed of sound," NASA, [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/sound.html. [Accessed 21 2 21].

[6] H. F. Institute, QBlade, TU Berlin.

[7] "SEMI-SCALE TAILWHEEL SYSTEM," Du-BRo, [Online]. Available: https://www.dubro.com/collections/landing-gear/products/semi-scale-tailwheel-system?variant=27880675271. [Accessed 21 2 2021].

[8]"QTModel Fixed Shock-absorbing Landing Gear For RC Airplane," Banggood, [Online]. Available: https://www.banggood.com/QTModel-Fixed-Shock-absorbing-Landing-Gear-For-RC-Airplane-p-1802243.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=US&utm_content=minha&utm_ca mpaign=minha-us-pc¤cy=USD&cur_warehouse=CN&createTmp=1&utm_sour. [Accessed 21 2 2021].

References - Continued

[9] "Aluminim Ski Se 60 size trike assy," [Online]. Available: https://www.hobbyprosdepot.com/productp/60trikeassy.htm. [Accessed 21 2 2021].

[10] M. Pro, Artist, Electronic Speed Controller. [Art].

[11] McMaster-Carr, "McMaster-Carr," McMaster-Carr, [Online]. Available: https://www.mcmaster.com/. [Accessed 21 2 2021].

[12] H. Hobbies, Horizon Hobbies, [Online]. Available: https://www.horizonhobby.com/. [Accessed 21 2 2021].

Appendix - Gantt Chart Complete

Figure (29): Full Gantt Chart

2-21-21, SAE Aero #4