

SAE Aero #04 Midpoint Presentation

Dylan Morgan, Aiden Hudson Ryan Stratton, Gajaba Wickramarathne

Project Description

- SAE Aero Regular
 - Design a real-world aircraft to carry a payload
 - Payload soccer ball
- The Regular Class
 - Is an all-electric class intended to develop a fundamental understanding of aircraft design.
- Client Changed from Dr.Oman to Dr. Willy

Figure 1: SAE logo [1]

Function

- Aircraft is designed to take flight
- Complete the following course
- Carry payload

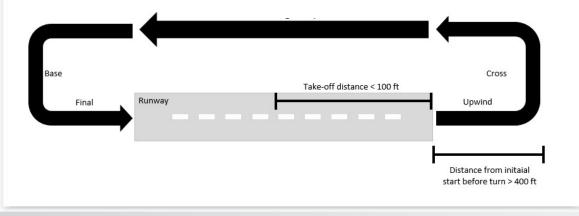


Figure 1: Flight path of aircraft

Iteration Process

Figure 2: First CAD model

Figure 3: Second CAD model

Figure 4: Third CAD model

 One thing that is interesting is how the plane has morphed over this project

Aiden 10/15/21 SAE Aero Capstone Team #04

Figure 5: Fourth CAD model

Financials – Orders – More

	Item or		o		-	ci · · ·	T L L C L		
/endor Name	Catalog #	Size/Color	Quantity	Cost	Тах	Shipping	Total Cost		
Horizon Hobby	SPMAR620	n/a	1	\$49.99	\$-	\$-	\$49.99	Order 1	Received
	SPMX32006S3								
Horizon Hobby	0C	n/a	1	\$84.99	\$-	\$-	\$84.99	\$409.45	
Horizon Hobby	HRC57417	n/a	1	\$15.97	\$-	\$-	\$15.97		
Horizon Hobby	SPMXC1080	n/a	1	\$99.99	\$-	\$-	\$99.99		
Horizon Hobby	EFLM4060B	n/a	1	\$126.99	\$-	\$-	\$126.99		
Amazon		Size 5	1	\$12.00	\$-	\$-	\$12.00		
Amazon		n/a	1	\$10.99	\$2.54	\$5.99	\$19.52		
FibreGlast	241	yards	25	\$5.75			\$143.75	Order 2	Submitted
FibreGlast	90/69-A	Gallons	1	\$83.95			\$83.95	\$358.46	
FibreGlast	582-C	5 yards	1	\$59.95	\$20.86	\$49.95	\$130.76		
Horizon Hobby	MAS1610TP	n/a	2	\$18.98	\$-	\$3.99	\$41.95	Order 3	
Amazon		n/a	1	\$10.38	\$1.43	\$5.99	\$17.80	\$135.76	
Adafruit	169	n/a	9	\$5.95	\$4.33	\$18.13	\$76.01		
McMaster- Carr	9314A831	25	1	\$8.94	\$-	\$-	\$8.94		
McMaster- Carr	93181A411	100	1	\$4.50	\$1.40	\$9.72	\$15.62		
							\$-		
				1		Subtotal	\$928.23		

Table 1: Purchased Products

Aiden 10/15/21 SAE Aero Capstone Team #04

Still need to get purchased

Table 2: Products that need to be obtained

	Home depot		\$275.16
Foam sheets	2	\$25.06	\$50.1
Bondo	1	\$16.47	\$16.5
Spreaders	2	\$4.27	\$8.5
Primmer paint	2	\$5.28	\$10.6
120 grit	1	\$12.97	\$13.0
220 grit	1	\$12.97	\$13.0
400 grit	2	\$4.97	\$9.9
800 grit	3	\$6.97	\$20.9
1000 grit	3	\$6.97	\$20.9
Surform	2	\$7.75	\$15.5
6 mil plastic	1	\$31.98	\$32.0
Lauan	1	\$24.88	\$24.9
wax	1	\$6.47	\$6.5
tape	1	\$21.97	\$22.0
Glue	1	\$10.97	\$11.0

Consumables for building still need to be purchased

Remaining budget \$295

Aiden 10/15/21 SAE Aero Capstone Team #04

Current state of System

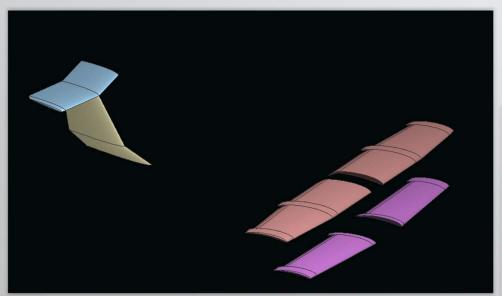


Figure 9: Current XFLR5 model

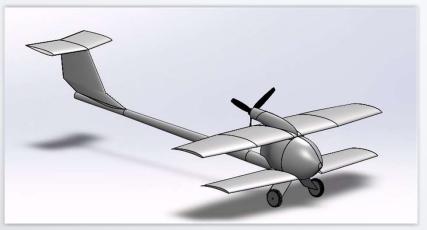
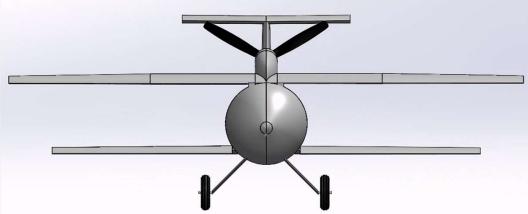



Figure 7: Current CAD model iso view [2]

Figure 8: Current CAD model front view [2]

Ryan 10/15/21 SAE Aero Capstone Team #04

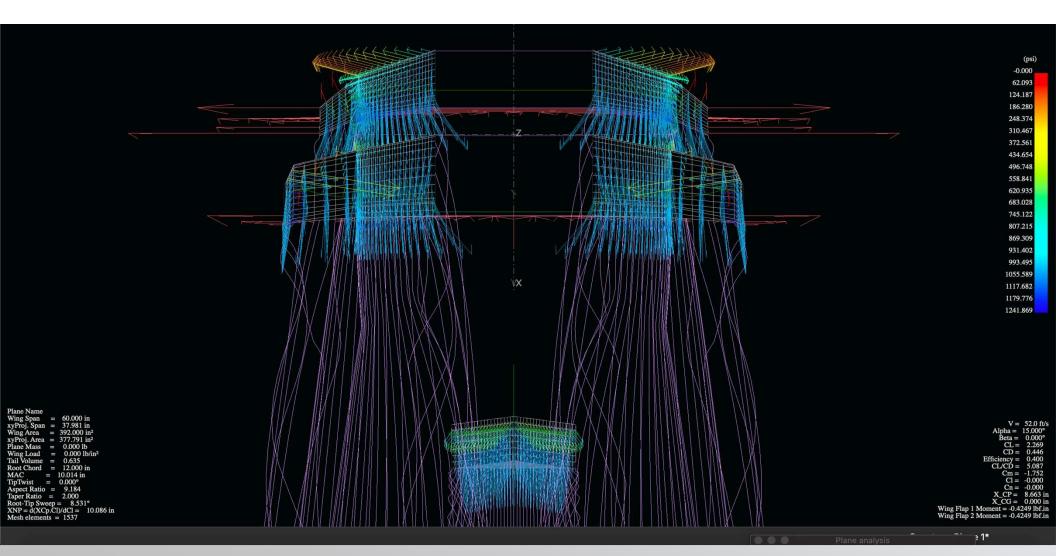


Figure 10: Downstream, F/s , Surface Velocities

[Gajaba] 10/15/21 SAE Aero Capstone Team #04

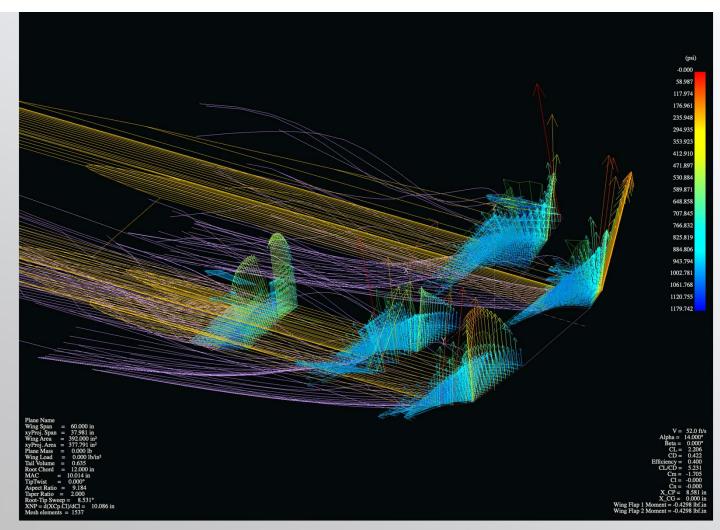
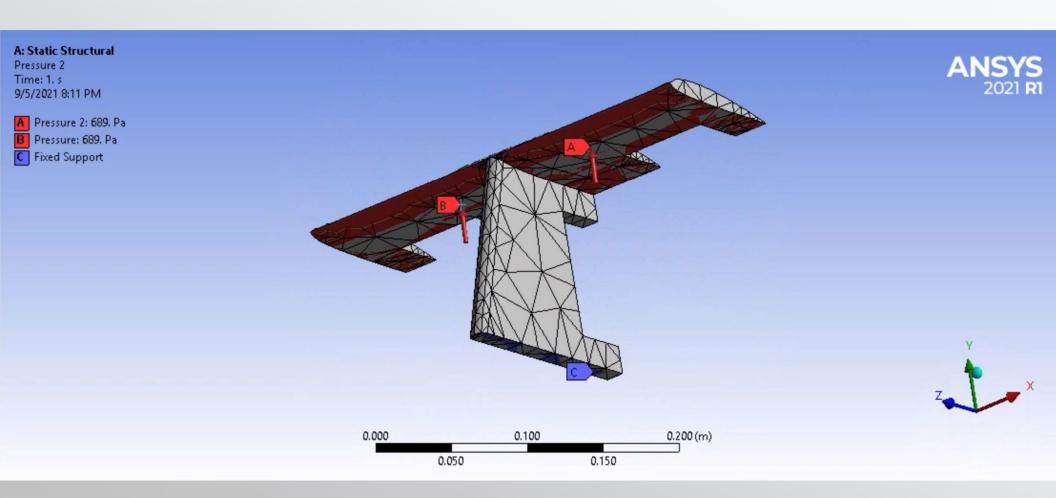



Figure 11: Alternate View

[GAJABA] 10/15/21 SAE Aero Capstone Team #04

Figure 12: Working Static Structural (MAPDL-FEA) model on ANSYS 2021

GAJABA 10/15/21 SAE Aero Capstone Team #04

10

Completed Action Items

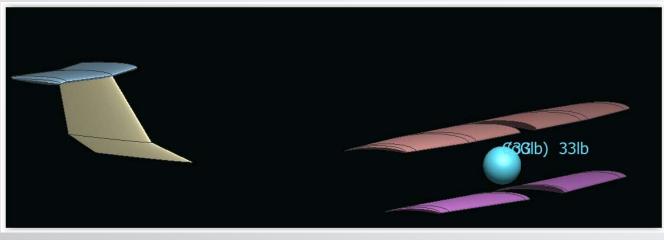


Figure 13: Current XFLR5 model with CG

- Aiden
 - Purchasing
 - CAD

- Ryan
 - CAD
 - XLFR5
 - Website
 - Calculation

- Gajaba
 - CAD
 - XLFR5
 - Engineering Analysis
- Dylan
 - Fabrication
 - Documentation

Ryan 10/15/21 SAE Aero Capstone Team #04

Implementation Plan

Due to limited time the current CAD will most likely be our final iteration

Future tasks – BUILD

- All hands on deck building
- Aiden electronics
- Dylan & Ryan mold fiberglass layup
- Gajaba continue analyzing fluid models

Figure 14: Lego man [3]

Dylan 10/15/21 SAE Aero Capstone Team #04

Manufacturing

Figure 15: Plug mold [4]

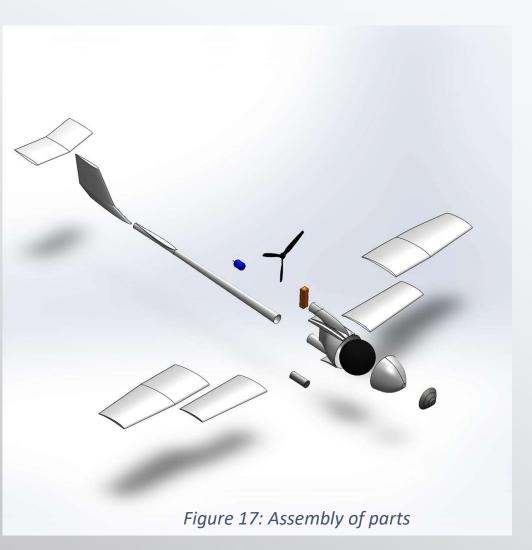


Figure 16: Fiberglassed mold [4]

- The team will use a plug mold approach
- Surface finish will be an issue with this method
- But with a little sanding and a gloss paint it should be good enough

Separate Parts

- Main wing
- Secondary wing
- Nose cone
- Fuselage
- Tail section
- Horizontal stabilizer
- Vertical stabilizer

Ryan 10/15/21 SAE Aero Capstone Team #04

Engineering Requirements, WHYS

- Engineering requirements come form competition
- Because of this our score matters more then anything else except crashing

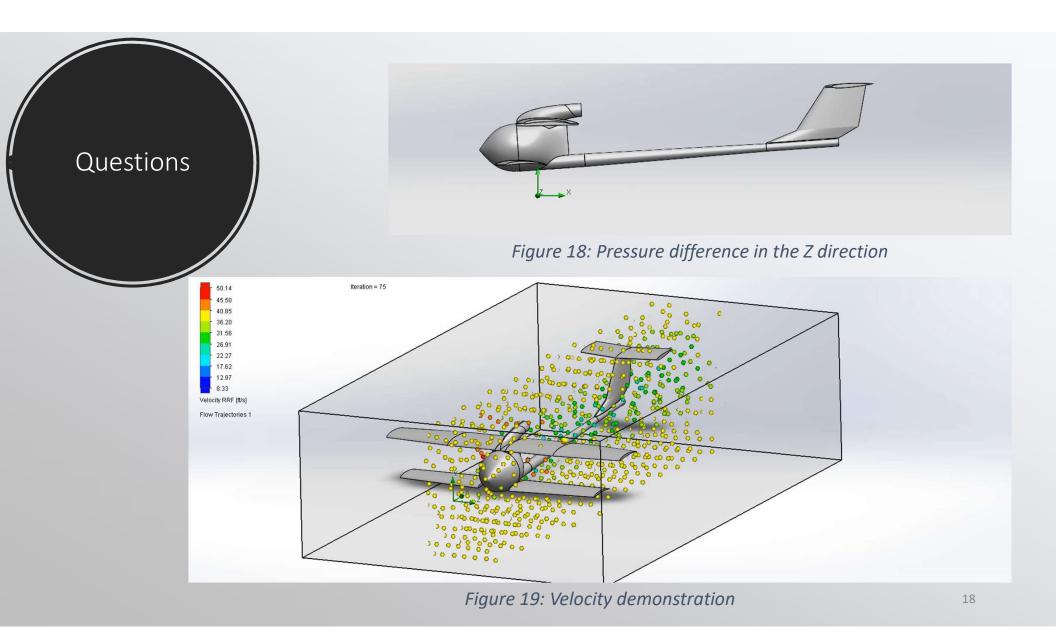
 $Flight Score = 120 * \frac{3 * S + W_{Payload}}{b + L_{Cargo}}$ S = Number of Soccer balls $W_{Payload} = Weighted Paylod (lbs)$ $L_{cargo} = Length of Cargo Bay (inches)$ b = Aircraft Wingspan (inches)

Mas payl		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Wing Span	60	21.0	26.2	31.4	36.7	41.9	47.2	52.4	57.6	62.9	68.1	73.4	78.6	83.8	89.1	94.3	99.6	104.8	110.0	115.3	120.5

Table 3: Calculation for flight score

Ryan 10/15/21 SAE Aero Capstone Team #04

Engineering Requirements


Table 4: Engineering requirements yes or nos

Cargo bay carrying standard size 5 soccer ball	Yes, the ball fits
Weight < 55 lbs	Estimated 30 lbs
Drag < Lift	When it takes moves, we will know
Lift > weight	> 30 lbs
1:1 Prop to motor gear ratios	Yes, motor is direct drive
Power <1000 watts	Yes, due to the power limiter
Wingspan 120 inches	Current design 60 inches

Testing Plan

Table 5: Engineering requirements testing

Engineering Requirement	Testing procedure
Cargo bay carrying standard size 5 soccer ball	Put the ball in plane make sure it fits
Weight	High speed taxiing, lift off
Drag < Lift	Hard to test and isn't important for competition (not testing)
Lift > weight	Test the plane at different weights and take it off (hopefully, we don't crash and raise the weight limit)
1:1 Prop to motor gear ratios	N/A
Power <1000 watts	N/A
Wingspan 120 inches	N/A

Extra Information

- Main wing
- Secondary wing
- Nose cone
- Fuselage
- Tail section
- Horizontal stabilizer
- Vertical stabilizer

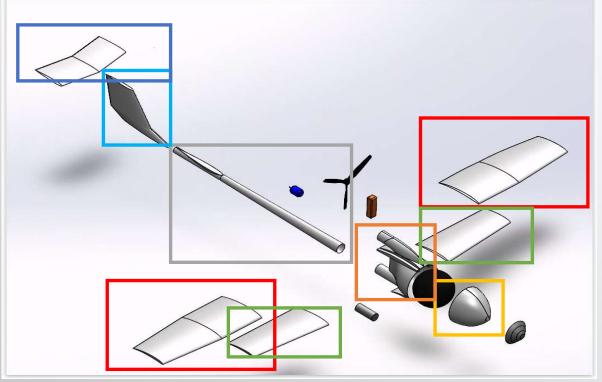


Figure 20: Graphicly showing the different part names

Plane numbers

- AOA = 11° AOA = 11°
- Mass = 15.00 Mass = 24.83
- Cl = 2.209
- Cd = 0.350
- Cl/Cd = 6.320
- Cm = -0.764
- AR = 5.720
- Cl/Cd = 6.320

• Cl = 2.209

• Cd = 0.350

- Cm = -0.764
- AR = 5.720

- AOA = 11°
- Mass = 33.00
- Cl = 2.209
- Cd = 0.350
- Cl/Cd = 6.320
- Cm = -0.764
- AR = 5.720

Table 5: Flight score possibilities

Wingsp an/payl oad mass	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Area	CL	LIFT
20																					138	0.94	3
22																					162	1.00	3
24																					186	1.06	4
26																					210	1.11	5
28	39.2																				234	1.17	6
30	37.2	46.5																			258	1.23	6
32	35.4	44.2																			282	1.28	7
34	33.7	42.2	50.6																		306	1.34	8
36	32.2	40.3	48.3	56.4																	330	1.39	9
38	30.8	38.5	46.3	54.0	61.7																354	1.45	10
40	29.6	37.0	44.4	51.7	59.1	66.5															378	1.51	12
42	28.4	35.5	42.6	49.7	56.8	63.9	71.0														402	1.56	13
44	27.3	34.2	41.0	47.8	54.6	61.5	68.3	75.1	82.0												426	1.62	14
46	26.3	32.9	39.5	46.1	52.7	59.2	65.8	72.4	79.0	85.6											450	1.67	15
48	25.4	31.7	38.1	44.4	50.8	57.1	63.5	69.8	76.2	82.5	88.9										474	1.73	17
50	24.5	30.7	36.8	42.9	49.1	55.2	61.3	67.5	73.6	79.7	85.9	92.0									498	1.79	18
52	23.7	29.7	35.6	41.5	47.4	53.4	59.3	65.2	71.2	77.1	83.0	89.0	94.9								522	1.84	19
54	23.0	28.7	34.4	40.2	45.9	51.7	57.4	63.2	68.9	74.6	80.4	86.1	91.9	97.6							546	1.90	21
56	22.3	27.8	33.4	38.9	44.5	50.1	55.6	61.2	66.8	72.3	77.9	83.5	89.0	94.6	100.2						570	1.96	23
58	21.6	27.0	32.4	37.8	43.2	48.6	54.0	59.4	64.8	70.2	75.6	81.0	86.4	91.8	97.2	102.5	107.9	113.3			594	2.01	24
60	21.0	26.2	31.4	36.7	41.9	47.2	52.4	57.6	62.9	68.1	73.4	78.6	83.8	89.1	94.3	99.6	104.8	110.0	115.3	120.5	618	2.07	26
62	20.4	25.5	30.6	35.6	40.7	45.8	50.9	56.0	61.1	66.2	71.3	76.4	81.5	86.6	91.7	96.7	101.8	106.9	112.0	117.1	642	2.12	28
64	19.8	24.8	29.7	34.7	39.6	44.6	49.5	54.5	59.4	64.4	69.3	74.3	79.2	84.2	89.1	94.1	99.0	104.0	108.9	113.9	666	2.18	29
66	19.3	24.1	28.9	33.7	38.6	43.4	48.2	53.0	57.8	62.7	67.5	72.3	77.1	81.9	86.7	91.6	96.4	101.2	106.0	110.8	690	2.24	31
68	18.8	23.5	28.2	32.9	37.5	42.2	46.9	51.6	56.3	61.0	65.7	70.4	75.1	79.8	84.5	89.2	93.9	98.6	103.3	108.0	714	2.29	33
70	18.3	22.9	27.4	32.0	36.6	41.2	45.7	50.3	54.9	59.5	64.0	68.6	73.2	77.8	82.3	86.9	91.5	96.1	100.6	105.2	738	2.35	35

Reference

- [1] "SAE," Wikipidea, [Online]. Available: https://en.wikipedia.org/wiki/SAE_International. [Accessed 14 10 21].
- [2] G. Gress, Artist, *Propeller 16x10in Master Airscrew 3-bladed*. [Art]. Grab Cad, 2014.
- [3] Unknown, Artist, https://m.media-amazon.com/images/I/618oKcmW2DL._AC_SS350_.jpg. [Art].
- [4] wilmracer, "RC Scratch Building Fiberglass Fuselage Without a Mold / https://www.youtube.com/watch?v=EB3_7Zow2ec," Youtube, 2016.