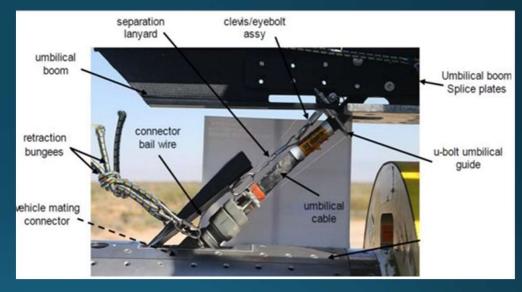
Umbilical Retraction Device

Griffin Brandt, Leah Blakney, Jonathan Armijo, William Shields Capstone Spring 2022

Scope of Project


Project Background:

- Signals are sent off to rockets to the very second before it takes off by umbilical cables.
- If the cables are not removed once the rockets takes off, they will come into contact and damage the rocket.
- Current systems include one-time use bungee cables.

Project Goal:

• Design an umbilical retraction system to pull the umbilical away from the vehicle during launch.

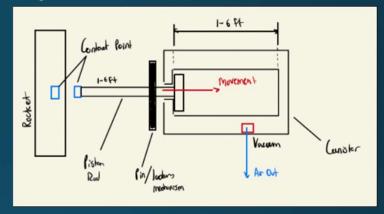
Figure 1: Current Retraction Cable

Customer and Engineering Requirements

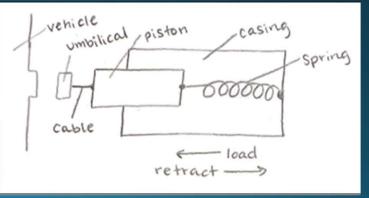
Table 1: CRs

Customer Requirements
CR1 - High Manufacturability
CR2 - High Reliability
CR3 - Easily Removable/Installed
CR4 - High Durability
CR5 - ESD Safe

Table 2: ERs


Engineering Requirements	Target
ER1 - Cost	<5000 (\$)
ER2 - Side Force	<10 (lbs)
ER3 - Retraction Speed	6ft/s
ER4 - Temperature	-30 to 160 (F)
ER5 - Weight	11b/1ft
ER6 - Adjustable	2 - 6 (ft)
ER7 - Success Rate	100 (%)

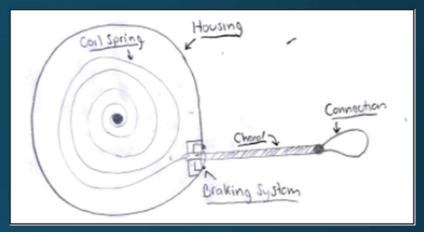
Decision Making


Table 3: Decision Matrix

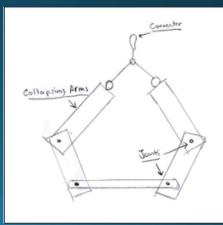
		Vacu	um Piston	Spring Piston			
Engineering Reqs.	Weight	Score	Weighted	Score	Weighted		
Cost	12	4	0.48	3	0.36		
Side Force	16	3	0.48	3	0.48		
Retraction Speed	17	4	0.68	3	0.51		
Temperature	11	5	0.55	4	0.44		
Weight	14	3	0.42	3	0.42		
Adjustability	10	4	0.4	2	0.2		
Success Rate	20	3	0.6	4	0.8		
Total	<mark>100</mark>	<mark>26</mark>	<mark>3.61</mark>	<mark>22</mark>	<mark>3.21</mark>		

Figure 2: Vacuum Piston

Figure 3: Spring Piston



Decision Making


Table 4: Decision Matrix (Continued)

		Do	g Leash	Тм	vo Arms
Engineering Reqs.	Weight	Score	Weighted	Score	Weighted
Cost	12	4	0.48	3	0.36
Side Force	16	4	0.64	4	0.64
Retraction Speed	17	3	0.51	3	0.51
Temperature	11	2	0.22	4	0.44
Weight	14	2	0.28	2	0.28
Adjustability	10	4	0.4	4	0.4
Success Rate	20	5	1	3	0.6
Total	<mark>100</mark>	<mark>24</mark>	<mark>3.53</mark>	<mark>23</mark>	<mark>3.23</mark>

Figure 4: Dog Leash Sketch

Figure 5: Two Arms Sketch

Decision Making

	Design 1	Design 2	Design 3	Design 4	Design 5	Design 6
Criteria	Vac. Piston	Spring Piston	Slingshot	Dog Leash	Two Arms	Bunjee
High Durability	+	+	S	+	+	D
High Manufacturability	-	-	S	-	-	
Easily Installed	+	+	S	+	S	А
Success Rate (100%)	-	-	S	S	+	
Cost (\$)	+	+	+	+	+	Т
Retraction Speed (6ft/1s)	S	S	S	-	-	
Weight (1lb/1ft)	-	-	S	-	-	U
Side Force (<10lbs)	+	+	+	+	S	
Size	-	-	S	-	-	М
Sum +	4	4	2	4	3	
Sum -	4	4	0	4	3	
Sum S	1	1	7	1	2	

Table 5: Pugh Chart

- Failure Modes and Effects Analysis
- Significant dependence on input signal from microcontroller
- Motor selection was crucial (maintaining efficiency and power)
- Multiple moving parts (maintain proper guidelines and through analysis)

Device Design

- Concept generation ended with the design of a winch.
- Will use a geared motor to turn a wheel that will pull in a retracting cable connected to the umbilical
- Actuation system is from a switch that is triggered when the umbilical is pulled away.
- Side plates welded to bottom base.
- All other components screwed and bolted together.

Figure 6: CAD Drawing (Exploded View)

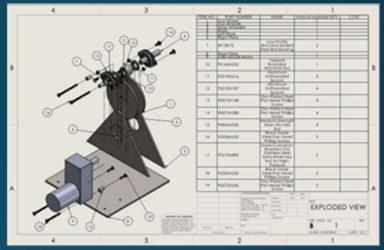
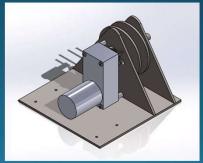



Figure 7: CAD Assembly

Manufacturing

- Multiple parts cut out on a laser cutter by the company Send-Cut-Send.
- Insider shaft pieces manufactured in house at the NAU machine shop.
- Welding was performed by managers of the NAU machine shop.

Part / Assembly	Part #	Quantit y	Price	Total Price	Statu s	Supplier	Manufacture	Start/Orde rDate	Finish/ ReceiveDat e
Left Disk Cut andTapped	NA	1	\$40.98	\$40.98		SendCutSen d	SendCutSend	5-Feb	14-Feb
Right Disk Cut andTapped	NA	1	\$41.05	\$41.05		SendCutSen d	SendCutSend	5-Feb	14-Feb
Left Side Plate Cut andTapped	NA	1	\$40.55	\$40.55		SendCutSen d	SendCutSend	5-Feb	14-Feb
Right Side Plate Cut andTapped	NA	1	\$41.66	\$41.66		SendCutSen d	SendCutSend	5-Feb	14-Feb
Base Plate	NA	1	\$123.97	\$123.97		SendCutSen d	SendCutSend	5-Feb	14-Feb
Welding, R/L Plate to Base	N/A	1	N/A	N/A		N/A	Machine Shop	25-Feb	25-Feb
Inside Wheel	N/A	1	N/A	N/A		Home Depot	Jonathan/Ma chine Shop	25-Feb	4-Mar
Shaft	N/A	1	N/A	N/A		Home Depot	Jonathan/Ma chine Shop	25-Feb	4-Mar
Electrical Layout	N/A	1	N/A	N/A		N/A	Jonathan	4-Mar	11-Mar
Machine Assembly	N/A	1	N/A	N/A		N/A	Griffin/ MachineSho p	7-Mar	30-Mar
Electrical Assembly	N/A	1	N/A	N/A		N/A	Jonathan/Ma chine Shop	7-Mar	29-Mar
Full Assembly	N/A	1	N/A	N/A		N/A	Team	14-Mar	30-Mar

Table 6: Manufacturing Plan

Manufacturing/Final Working Assembly

- Figure [8] is of the electrical circuit which includes an activator switch (bottom right, a 40 Amp fuse (left), power supply (top), and motor controller (bottom)
- Figure [9] shows the machined assembly which includes all manufactured pieces along with the motor.
- Wood used on base to support structure.

Figure 8: Electrical Circuit

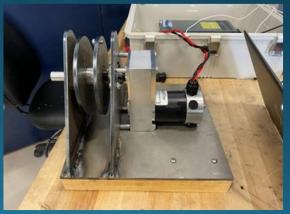
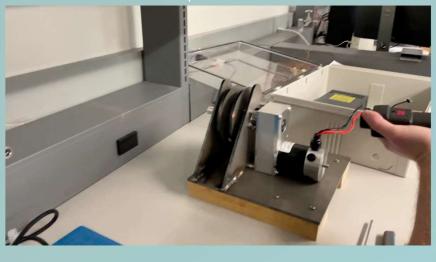


Figure 9: Hardware Assembly

Budget


Table 7: Purchasing Plan

- The total purchasing is \$1890.30
- The budget from our client Northrop Grumman was \$5000
- Current balance of \$3109.70

	Part / Assembly 🔻	Part # 🔻	Quantit 🔻	Price 💌	Total Pric 🔻	Statu 💌	Supplier 💌	Manufacture 💌	Start/Order Dat	Finish/ Receive Date
	Cord	KIT110-2	1	\$ 64.00	\$ 64.00	9 &	Wes Spur	Wes Spur	12-Nov	10-Jan
	Motor	A128-150-G8	1	\$ 529.00	\$ 529.00		AmpFlow	AmpFlow	17-Nov	3-Feb
	Motor Controller	MCP266	1	\$ 269.00	\$ 269.00		AmpFlow	AmpFlow	17-Nov	3-Feb
	Power Supply	S-1000-24	1	\$ 199.00	\$ 199.00		AmpFlow	AmpFlow	17-Nov	3-Feb
	Speed Adjuster	MCP DM Controller	1	\$ 20.00	\$ 20.00		AmpFlow	AmpFlow	17-Nov	3-Feb
	Bearing 1"	5913K74	2	\$ 12.77	\$ 25.54		McMaster-Carr	N/A	1-Feb	10-Feb
om	Bearing 3/4"	5913K73	2	\$ 11.90	\$ 23.80		McMaster-Carr	N/A	1-Feb	10-Feb
5111	Machine key	90164A655	2	\$ 7.22	\$ 14.44		McMaster-Carr	N/A	3-Feb	10-Feb
	Left Disk Cut and Tapped	NA	1	\$ 40.98	\$ 40.98		SendCutSend	SendCutSend	5-Feb	14-Feb
	Right Disk Cut and Tapped	NA	1	\$ 41.05	\$ 41.05		SendCutSend	SendCutSend	5-Feb	14-Feb
	Left Side Plate Cut and Tapped	NA	1	\$ 40.55	\$ 40.55		SendCutSend	SendCutSend	5-Feb	14-Feb
	Right Side Plate Cut and Tapped	NA	1	\$ 41.66	\$ 41.66		SendCutSend	SendCutSend	5-Feb	14-Feb
5	Base Plate	NA	1	\$ 123.97	\$ 123.97		SendCutSend	SendCutSend	5-Feb	14-Feb
	Tool Replacement Cord 14/3	342-576	1	\$ 14.47	\$ 14.47		Home Depot	CerroWire	7-Feb	7-Feb
	Southwire Cord 1.66/ Ft	12/3 300 Volt	3	\$ 1.66	\$ 4.98		Home Depot	Gardner Bender	7-Feb	7-Feb
	16-14 AWG Ring Terminals 15 pack	15-104	1	\$ 2.95	\$ 2.95		Home Depot	Gardner Bender	7-Feb	7-Feb
20	12-10 AWG Ring Terminals 15 pack	15-107	1	\$ 3.61	\$ 3.61		Home Depot	Gardner Bender	7-Feb	7-Feb
ce	22-18 AWG Spade Terminal 6 Pack	15-111	1	\$ 2.40	\$ 2.40		Home Depot	Gardner Bender	7-Feb	7-Feb
	D-Sub Serial Adapters	DB15 RS232	1	\$ 12.99	\$ 12.99		Amazon	Jienk	21-Feb	1-Mar
	Enclosure	0791778468009	1	\$ 161.99	\$ 161.99		Amazon	YUEQING QILI ELECTRICAL	21-Feb	1-Mar
	Toggle Switch	6919608793716	1	\$ 7.19	\$ 7.19		Amazon	HiLetgo	21-Feb	1-Mar
	Power Socket w Switch Fuse	B082ZFRV1B	1	\$ 8.99	\$ 8.99		Amazon	MXRS	21-Feb	1-Mar
	External Cooling Fan	B009OWVUJ0	1	\$ 18.99	\$ 18.99		Amazon	AC Infinity	21-Feb	1-Mar
	Cable Gland Pack	0752771026917	1	\$ 16.49	\$ 16.49		Amazon	Cable Gland	21-Feb	1-Mar
	40A Inline Circuit Breaker	B07KF2PV6V	1	\$ 16.99	\$ 16.99		Amazon Y-SOLAR		21-Feb	1-Mar
	Wire Connector Kit	B01LCG52C6	1	\$ 13.99	\$ 13.99		Amazon	EL-SKY 21-Feb	21-Feb	1-Mar
	Hot Rolled Plate Gusset	B00YWBSR94	1	\$ 12.99	\$ 32.37		Amazon	IMS	21-Feb	1-Mar
	Gusset with Hole	B009Q73QMM	1	\$ 12.25	\$ 12.25		Amazon	Allstar Performance	21-Feb	1-Mar
	Lathe Stock	B01F80WG1W	1	\$ 29.99	\$ 29.99		Amazon	Stoner Metals	21-Feb	1-Mar
	Chassis Mount for Connectors Sets	HS-4	1	\$ 11.99	\$ 11.99		Powerwerx	Powerwerx	21-Feb	1-Mar
	Aluminum Material	NA	1	\$ 27.93	\$ 27.93		Home Depot	Home Depot	26-Feb	26-Feb
	Scrap Wood & Bolt, Nut, and Screw K	NA	1	\$26.14	\$ 26.14		HomeCo	HomeCo	3-Mar	3-Mar
	Side Plate and Disk	NA	1	\$30.62	\$ 30.62		SendCutSend	SendCutSend	7-Mar	28-Mar

Testing

Video 1: Motor Startup Test

Test	Relevant Requirement	Procedure Summary	What was Learned
Motor Startup	CR2	Motor, MCP and power supply all connected and ran. Emergency stop intiated at different speeds.	All components working correctly. Gearbox was capable of handling braking load.
Cable Test	CR2, CR4, ER4, ER6	Flame applied to cable. Different weight were hung from cable.	Chosen cable could withstand loads and conditions that our device would experience.
Rotation Speed	ER2, ER3, ER5, ER6, ER7	Device was ran at different duty cycles and speed was measured with a tachometer.	Were able to obtain speeds for different duty cycles which were used for calibrating our motor controller.
Retraction Speed	ER2, ER3, ER5, ER6, ER7	Device tested with different loads that mocked pulling an umbilical cable.	Helped determine if our device would meet our customer requirements for retraction speed.
Side Force	ER2	Our cable was attached to a force gauge and the initial force from the weight of the chord and carabiner were recorded.	Showed that we were well under the customer requirement for initial side force.
Environmental Testing	CR2, CR4, ER2, ER3, ER4, ER5, ER6, ER7	Device tested at extreme temperatures to simulate launch conditions.	Showed that our device could withstand launch conditions.

Table 8: Testing Overview

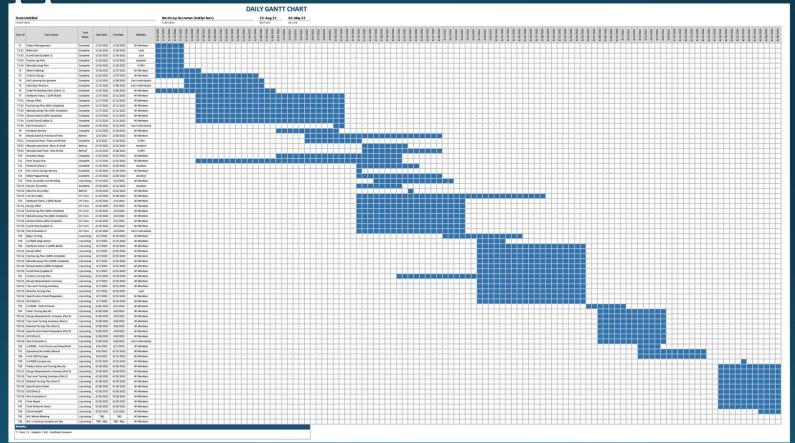
Results

Table 10: Specification

Customer Requirement	CR Met? (Yes or No)	Client Acceptable (Yes or No)
CR1 - High Manufacturability	Yes	TBD
CR2 - High Reliability	More testing needed	TBD
CR3 - Easily Removable/Installed	More testing needed	TBD
CR4 - High Durability	More testing needed	TBD
CR5 - ESD Safe	Yes	TBD

Engineering Requirement	Target	Tolerance	Measure/Calculate d Value	ER Met? (Yes or No)	Client Acceptable (Yes or No)
ER1 - Cost	<5000 (\$)	TBD	1860(\$)	Yes	TBD
ER2 - Side Force	<10 (lbs)	TBD	TBD	TBD	TBD
ER ₃ - Retraction Speed	6ft/s	TBD	700 RPM Max	More Testing Needed	TBD
ER4 - Temperature	-30 to 160 (F)	TBD	TBD	TBD	TBD
ER5 - Weight	1lb/ft	TBD	TBD	TBD	TBD
ER6 - Adjustible	2 - 6 (ft)	TBD	Yes	TBD	TBD
ER7 - Success Rate	100 (%)	100%	So Far	So Far	TBD

Future Work


- Heat shield to be added to the device.
- Testing with different weighted wheels to decrease moment of inertia.
- Fatigue testing on parts.
- Testing in real scenarios, at tilted angles, and different cord sizes.

Questions?

Appendix - QFD

1	Cost		/												
2	Side Force		3												
3	Retraction Speed		3	9	/										
4	Temperature		1	0	1							Leg	end		
5	Weight		9	9	3	0				А	W.L. G	iore for	Lockh	eed Ma	rtin
6	Umbilical Length		0	9	9	0	9			В	North	rop Gru	ımman	Umbili	ical
7	Success Rate		9	3	9	9	1	3		С	NASA	Retract	ion Arı	m	
						Technical Re	q.			Cu	ustome	r Optio	n Surve	ery	
	Customer Needs	Customer Weights	Cost	Side Force	Retraction Speed	Temperature	Weight	Length	Success Rate (%)	1. Poor	2	3. Average	4	5. Good	
1	High Manufacturability	3	3	0	0	0	3	1	3	-	A	(1)	C	B	
2	High Reliability		3	9	9	3	3	1	9		c		В	A	
3	Easily Installed/Removed	4	1	0	0	0	9	3	3	Α	C		A	B	
4	High Durability	4	9	9	9	9	3	9	9	В				AC	3
5	ESD Safe	3	1	1	3	3	0	0	1					ABC	
	Tech Reg.Units		Dollars(\$)	Pounds (Ibs)	Speed (ft/s)	Fahrenheit (F)	Force (lb/ft)	Feet (ft)	Success Rate (%)						
	Tech R	eq. Targets	5000	<10	6ft / 1s	-30F to 160F	1lb / 1ft	2ft to 6ft	100						
	Absolute Tech. I	mportence	67	84	90	60	72	56	105						
	Relative Tech I	mportance	5	3	2	6	4	7	1						

Appendix – Gantt Chart

References

McMaster-Carr. [Online]. Available: https://www.mcmaster.com.

N. Grumman. [Online]. Available: https://www.northropgrumman.com.

A. Flow. [Online]. Available: https://www.ampflow.com/.

Send-Cut-Send. [Online]. Available: https://sendcutsend.com.

N. A. U. M. Shop. [Online]. Available: https://ceias.nau.edu/me/fabricationshop/.

H. Depot. [Online]. Available: https://www.homedepot.com/?mtc=SEM-BF-F_Brand-G-Multi-Multi-Multi-NA-NA-ETA-NA-NA-THD_BT1&cm_mmc=SEM-BF-F_Brand-G-Multi-Multi-Multi-NA-NA-ETA-NA-NA-THD_BT1-71700000002449093-58700000047538642-43700003817116349&ds_rl=5041&gclid=CjwKCAjwur-SBhB6EiwA5sKtjlCU.

H. L. a. Hardware. [Online]. Available: https://www.myhomco.com/.