CWC Turbine Hardware Review 2

Barry Benson Tore Cadmen Bryce Conner

Joseph Conroy

Stan Kennedy

Aaron Zeek

Hardware Review I Submission

Figure 1: HWR1 Digital Submission

Figure 2: HWR1 Physical Submission

Overview

Updated Assembly

Processing Reworks

-Electrical Housing

- -Tower
- -Baseplate

-Fin

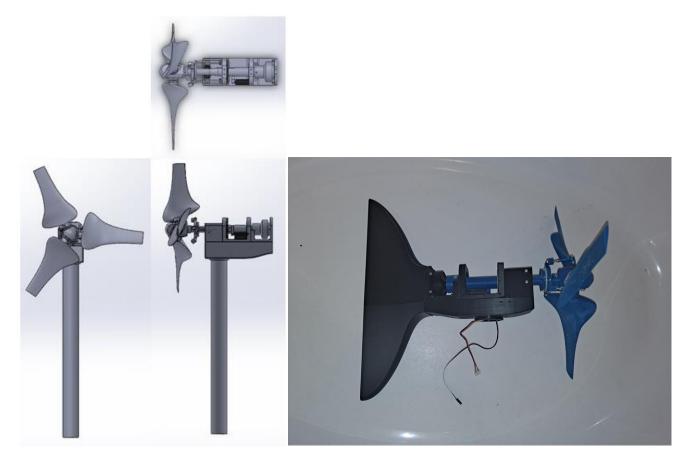


Figure 3: HWR2 Digital Assembly Figure 4: HWR2 Physical Assembly

PCC Box (Barry Benson)

Completed

- Arduino (Controls)
 - Stepper Motor (Pitching Mechanism)
 - Linear Actuator (Braking Control)
- Arduino (Environmental Data)
 - Multiple Pressure Transducers
 - Temperature Sensors
- PCC Box
 - Anemometer
 - Voltage Readout
 - Ampere Readout
 - Digital LabView Readout and Data Recorder

Next to Complete

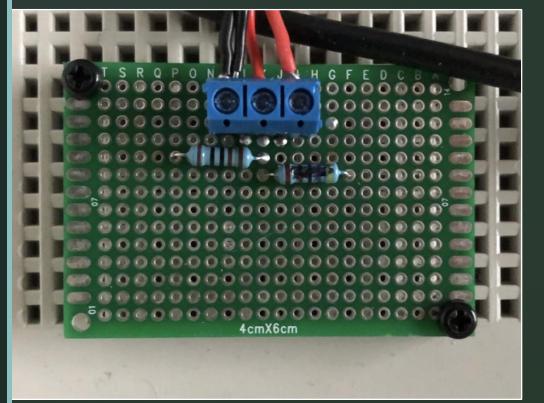

- Complete Machining
 - 80% Shaft done needs fine details worked out
 - Tower to hold bearings/ nacelle/ mounting to the base plate
- Arduino (Controls)
 - Emergency Stop
 - Loss of power scenario

Figure 5: Hard-wired Voltage readout

Figure 6: NI DAQ System

PCC Box (Barry Benson)

- NI 6001
 - DAQ system records turbine voltage and current as well as the wind speed
- Voltage drop
 - Using a block for common ground and signal out and voltage in for DAQ recording
 - Uses 570 kOhm and 100kOhm Resistor

Figure 7: Voltage Drop

Arduino (Environmental)

- LSP25 (Pressure)
- MLP3115A2 (Pressure)
- MAX 31885 (Temperature)

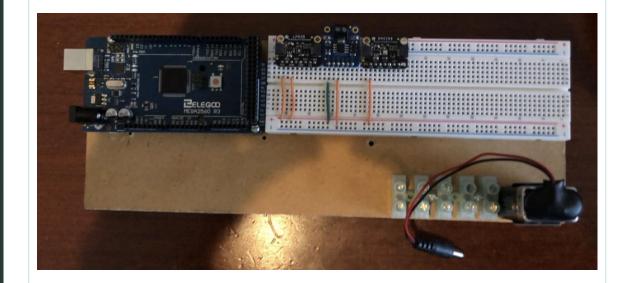


Figure 8: Arduino Testing Facility

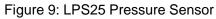
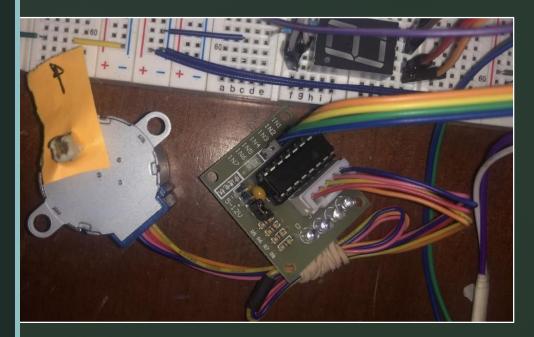



Figure 10: MPL3115A2 Sensor

Figure 11: Liner Actuator

Arduino (Controls)

- Linear Actuator
 - Code has been created for use

Stepper motor

 Also created for when team is ready

7

Figure 12: Stepper Motor and Driver

Shaft Machining (Barry Benson)

- 80% Complete
 - Need to go to machine shop to complete
- More detail later with Bryce
 - Has full CAD file

8

Figure 13: Partially Machined Shaft and Disk

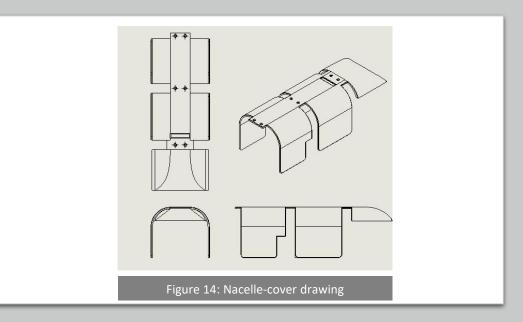
Tore Cadman

Completed

- Nacelle Cover
- Electrical Housing
- Bracket
- Base Plate
- Tower

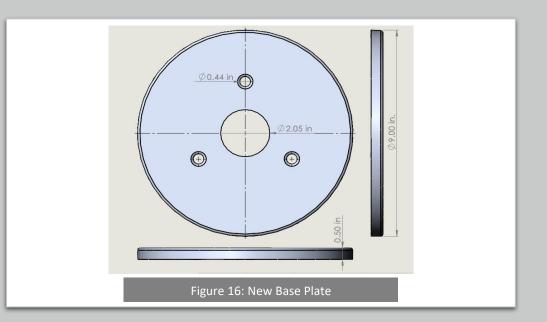
➡ Design/update design

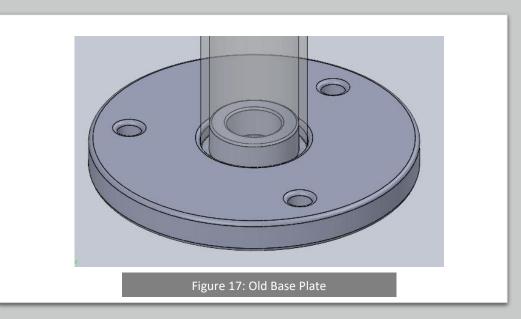
- Update design for new connection
- → Update design for cover
- 🛑 Remake
 - Redesigned + retaining ring


Next up...

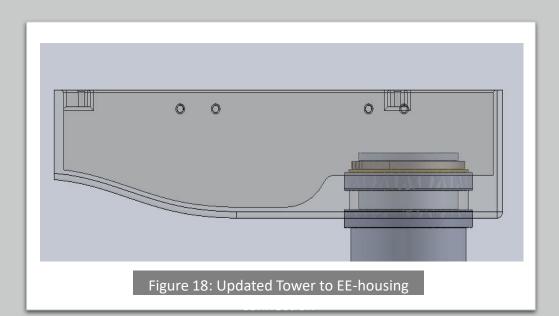
- FEA analysis
- System Testing

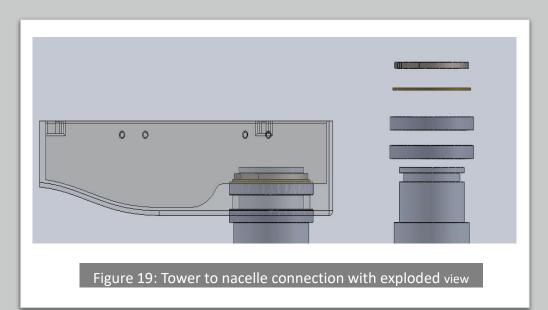
Nacelle-Cover


- Reworked to be one piece instead of three
- Front connection methodology widened
- Front cover piece slope adjustment



Base Plate


- Not much has changed other than a wider bottom diameter and a thinner plate.
- 6061 Aluminum 9 x 0.5 inches
- Thinner than competition constraints so it fits our model.



Tower/Connection Methodology

- Switched from a PVC pipe tower to a two foot long 6061 Aluminum tower.
- 2.053 outer diameter and 1.220 inner diameter
- Tower connection redesigned for a retaining ring and spacer ring rather than just a press/welded fit.

Bryce Conner

Electrical Housing	Print
Bracket	Reprint
Fin	Redesign and Print
Blade 8	Print
Shaft	Redesign and Print
Static Experiments	Design
Hub	Redesign and Print
Swash Plate	Redesign and Print

Electrical Housing 2 (Tore Cadman - Design)

Print

22 Hours Warping of Bearing Housing Extensive Treatment Required

Figure 20: Printed Electrical Housing

Bracket(s)

Reprint

12-17 Hours100% infillPLA PlusWarping Issues

Figure 21: Reprinted Brackets using PLA Plus

Design and Print

Larger Surface Area Midplane Connection 13-15 hours Brim

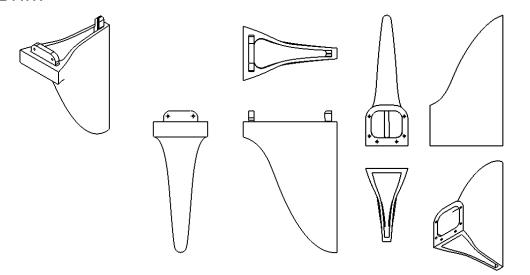


Figure 22: Lower Segment of Tailfin

Figure 23: Upper Segment of Tailfin

Figure 24: Printed Tailfin Assembly

Blade 8 (Aaron Zeek - Design)

Print

18 HoursMinimal TreatmentConnection to Heim Joints

Figure 25: Printed Blade 8

Shaft 2 (Barry Benson, Joe Conroy – Concept)

Design and Print

One Part Coupler Clearence 10 Hours

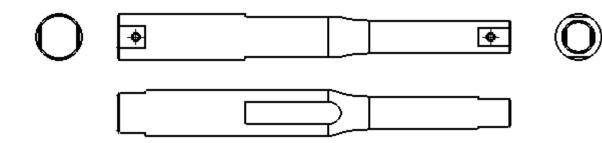
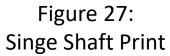



Figure 26: Single Shaft Redesign

Static Experimentation

Design

Weight mouting systems : Start up, Braking, Pitching

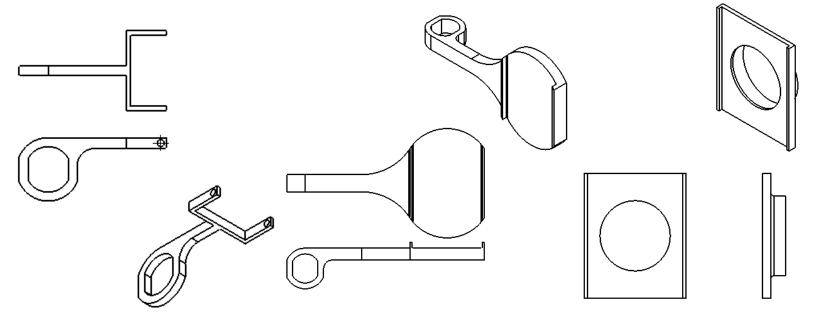


Figure 28: Start Up Lever Arm

Figure 29: Holding Torque Lever Arm

Figure 30: Rotational Member (Pitch Loading)

Hub

Redesign and Print

M4 Step Up Sleeves Extended Surface Area Deeper Shaft Connection 11 Hours Minimal Treatment

Figure 31: Redesigned Printed Hub

Swash Plate

Redesign and Print

Thinner Bearing Deeper Joint Connections Larger Pitch Range Through Holes (Lock Nuts) PLA Plus 1-2 Hours

Figure 32: Redesigned Printed Swash Plate

Joseph Conroy

Completed

- Pcc set up
 - Shunt resistor
 - Voltage drop
 - Wiring of PCC box
- Setting up DAQ system
 - Block and dial readout

What's next

- Finishing machining of baseplate
- Setting up final wiring for the turbine
- Conducting initial tests
- Conducting car testing

Turbine set up

Setup

Removing top section of jeep Place plywood on top of jeep Place bolts through center holes and strap remaining sections of plywood down

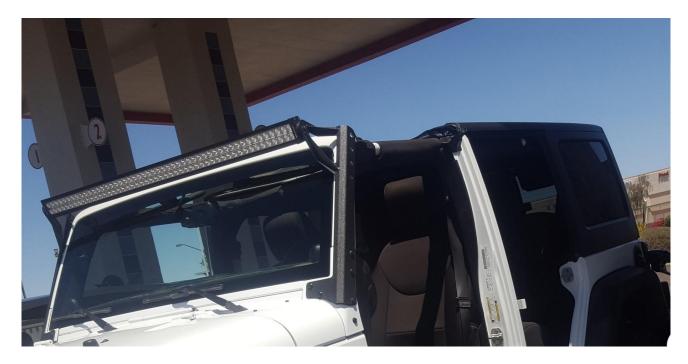
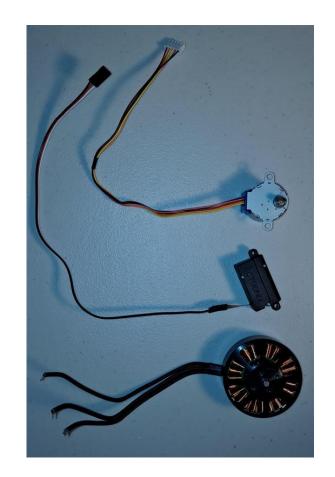
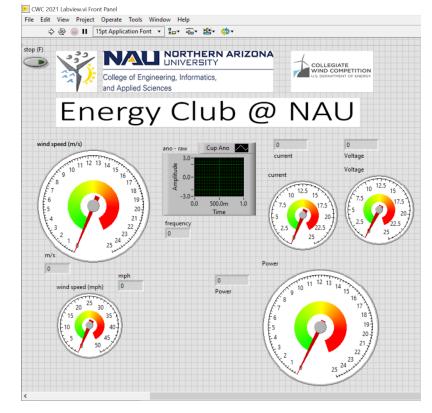


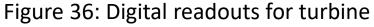
Figure 33: Set up of Jeep without roof

Turbine wiring

- Design and construct
 - Run 12-gauge wiring from PCC to turbine
 - Connect all remaining parts of turbine
 - Ground out all excess wiring




Figure 34: wiring components in the turbine


DAQ system

Redesign

Finalize multipliers to get accurate readouts Finalize the refresh rate for the dial readouts

as well as frequency

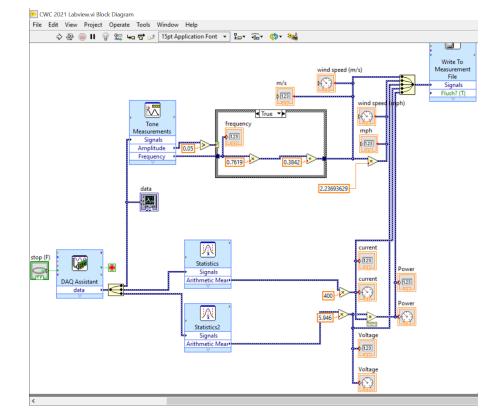


Figure 35: Block Diagram

Stan Kennedy

Completed

- Stepper Motor Reselection
- Brake Pad Boot

Completing

- ANSYS Flow Modeling
- Testing

Stepper Motor Reselection

Initial Product

• Low Holding Torque

Prospective Solutions

• NEMA 17

Prospective Solutions

• Automotive Gauge

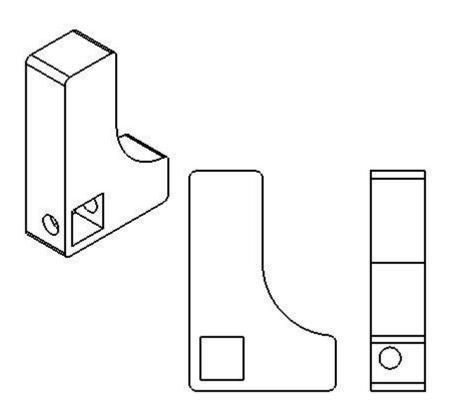
Figure 37: Stepper driver

Figure 38: NEMA17 stepper

Figure 39: Stepper motor

Brake Pad Boot

Product Parameters

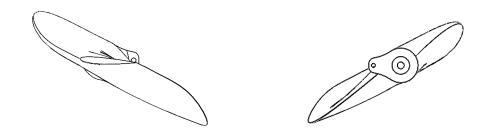

- High Torque
- Physical Dimensions
- Durable

Designs

- Radial Match
- 2nd Class Lever
- L shaped Boot

Final Design

• L Shaped Boot



Blade Redesign: Purpose and Geometry

- Purpose: Meet new engineering requirement of 0.02Nm Torque at start up conditions
- Methodology: Increase rotor solidarity by increasing the chord length near the root
- Airfoils: NACA 2412 & NACA 1412

Table 1 : Blade Geometry

Radial Position [m]	Chord Length [m]	Twist [deg]	in [% chord]	Airfoil Name	360 Polar Name
0.03	0.02	0.00	0.25	Circular Foil	CD = 1.2 360 Polar
0.04	0.02	0.00	0.25	Circular Foil	CD = 1.2 360 Polar
0.06	0.14	31.61	0.25	NACA 2412	T1_Re0.125_M0.00_N9.0 360 M
0.08	0.11	22.50	0.25	NACA 25412	T1_Re0.122_M0.00_N9.0 360 M
0.10	0.08	16.19	0.25	NACA 2412	T1_Re0.083_M0.00_N9.0 360 M
0.12	0.06	13.37	0.25	NACA 1412	T1_Re0.095_M0.00_N9.0 360 M
0.14	0.05	10.30	0.25	NACA 1412	T1_Re0.095_M0.00_N9.0 360 M
0.16	0.04	8.03	0.25	NACA 1412	T1_Re0.092_M0.00_N9.0 360 M
0.18	0.04	6.29	0.25	NACA 1412	T1_Re0.095_M0.00_N9.0 360 M
0.20	0.04	4.93	0.25	NACA 1412	T1_Re0.100_M0.00_N9.0360 M
0.22	0.04	3.83	0.25	NACA 1412	T1_Re0.100_M0.00_N9.0360 M

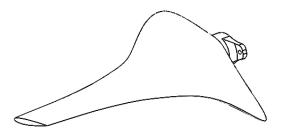
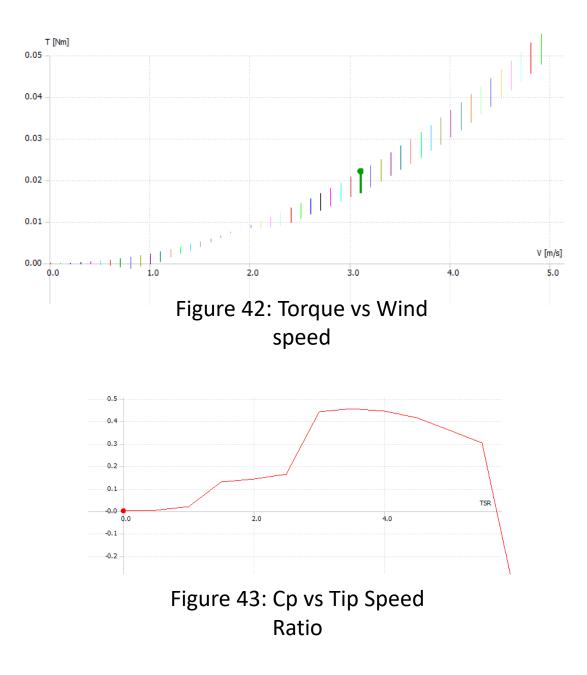



Figure 41: Blade 8 Design

Aaron Zeek

Blade Redesign: Performance

- Cp = 0.45 at operating conditions
- 0.022Nm at 3 m/s wind speeds and angle of attack of -44 degrees

Future Steps

Redesign		Testing (Team)		
Fin Baseplate Slip Ring	Bryce Tore Aaron	Pitching Start Up Stall		
Printing (Bryce)		Rotor Strength Brake Yaw Electrical Load		
Testing Equipment Electrical Housing 3 Blade 8 (Connection Methodology) Brackets		Submissions (Team)		
Analysis		Hardware Review 2 Memo Final Presentation		
FEA of Tower FEA of Rotor	Tore Bryce	UGRADs Poster Subassembly and Testing (DoE) Final Report		
Machining		Operation Manual Final CAD Package Finalized Website Project and Turbine Report (DoE)		
Shaft Tower Baseplate PCC	Barry Barry Joe Joe			

Questions