FAN FLYER: FINAL PROPOSAL

CHRISTIAN RIGGS

FAISAL ALMUTAIRI

KHALED ALAZEMI

ALI ALMARI

Figure 1: Fan Flyer

Faisal Almutairi 5/3/2019

2 PROJECT DESCRIPTION

- The team is to design and prototype a pitch control actuator for the fan blades of a Fan Flyer
- Project Client
 - Jim Corning of Novakinetics Aerosystems

Jim Corning

3 PROJECT DESCRIPTION

What is Fan Flyer and what its purpose?

- VTOL (Vertical Take-Off and Landing) aircraft
- spray crops
- carry water to forest fires
- · carry supplies to remote locations,

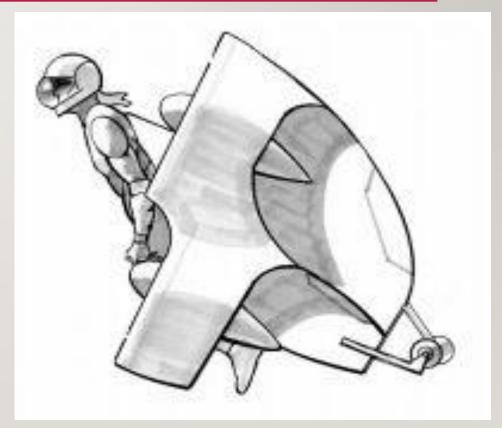


Figure 2: Fan Flyer

4 BLACK BOX

 The use of a Black Box model is very crucial since it allows for a full scale understanding of what the system requires to accomplish

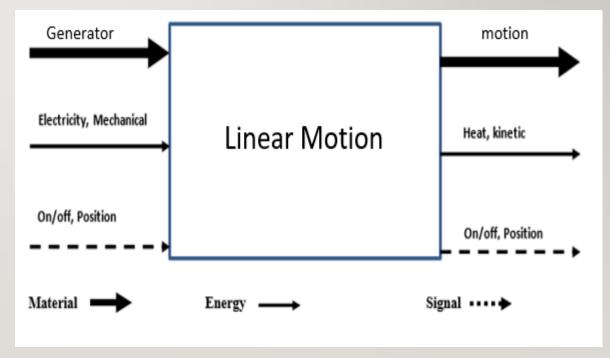


Figure 3: Black Box Model

5 FUNCTIONAL DECOMPOSITION

- The functional model is a breakdown of how the team theorized the working of pitch actuator system.
 - Both the black box and the functional model were critical for us to come up the our concepts

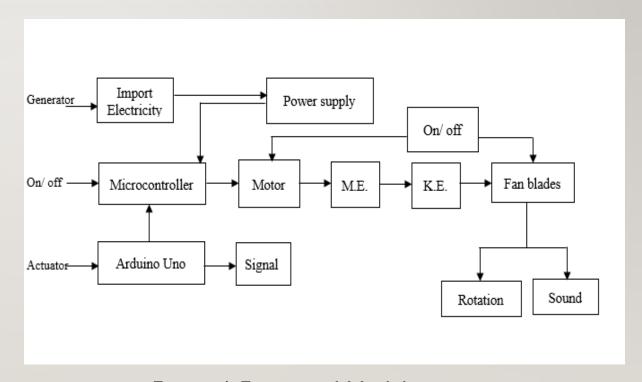


Figure 4: Functional Model

Khaled Alazemi 5/3/2019

6 DESIGN DESCRIPTION

- CAD Draft
- Motor, Gears, aluminum bar

Figure 5: Actuator

7 BILL OF MATERIALS

Bill of Materials											
Materials	Part No.	Manufactor	Description	Number of parts	Cost per P	art To	otal Cost				
Servo Motor	NEMA23-AMT112S	CUI, INC.	Stepper Servo Motor	1	\$ 132.2	5 \$	132.25				
Servo Motor	NEMA11-13-01D-AMT112S	CUI, INC.	Stepper Servo Motor	1	\$ 120.9	1 \$	120.91				
Brushless DC Motor	EC044A-20D0-803-SP	Haydon Kerk & Pittman	44mm Brushless DC motor	1	\$ 105.0	0 \$	105.00				
Stepper Motor	STP-MTRH-23079	Automation Direct	Stepper motor - 5.6 Amp	1	\$ 52.0	0 \$	52.00				
3D Model	N/A	Maker Lab NAU	PLA 3D Printed object	1	\$ 6.7	6 \$	6.76				
Steel Bar	ASTM A36	Discount Steel	Hot Rolled Steel Square Bar	1	\$ 25.2	3 \$	25.23				
Aluminum Bar	ASTM B221-08 6061-T6	Discount Steel	Aluminum Sqaure Bar	1	\$ 47.8	8 \$	47.88				

8 ANALYSES I: MOTOR

Now, for moving a load of 25lb. The actuator force is:

$$F_{actutor} = igg(rac{w_t}{g}igg) a + \ F_{applied} + \ \mu W_{Load}$$

Where, $W_L = 25lb$ that is considered as load that is to be moved using this particular force:

$$g = 32.2 ft/s^2$$

$$\mu = 0.9$$

$$W_t = W_{Load} + W_{actuator}$$

$$W_t=25\ +10$$

$$W_t = 35$$
lb

For acceleration,
$$a = \frac{\Delta v}{t} = \frac{\Delta s}{t^2} = \frac{7}{10^2} = 0.07 \text{ in/sec}^2$$

Substituting all the values in the formulae:

$$F_{actutor} \, = \left(rac{35}{32.\,2}
ight)rac{0.\,07}{12} + \, 0 \, + \, 0.\,9igg(25igg)$$

$$F_{actutor}\,=22.\,5~lb$$

This is the force applied by the actuator considering the effect of friction.

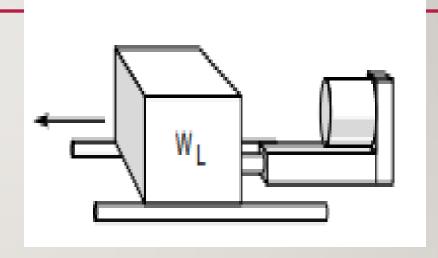


Figure 6: Actuator

9 ANALYSIS 2: MOTION STUDY

- How the Design will fit into the blades
- Actuator purpose
- How the Actuator interacts with the parts of the fan

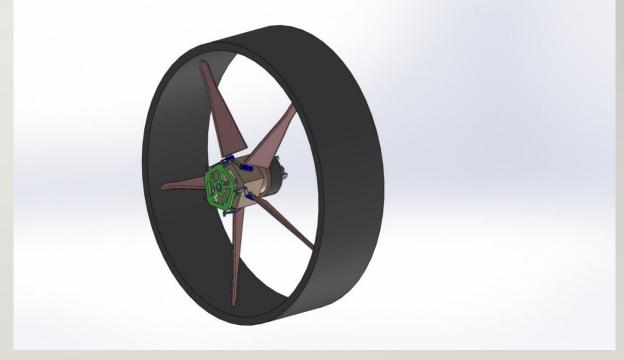


Figure 7: Fan Cad Model

Khaled Alazemi 5/3/2019

10 ANALYSIS 2

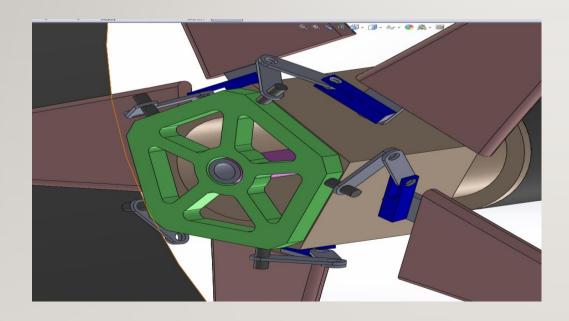


Figure 8: Mechanisms in stowed condition

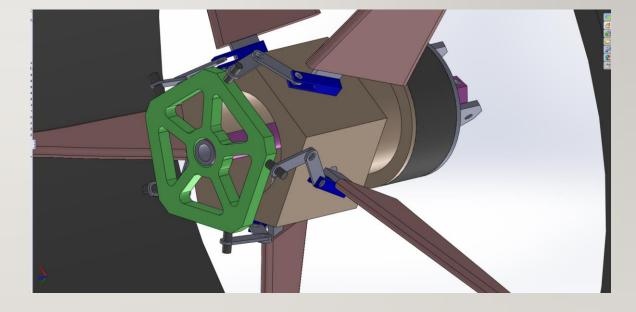
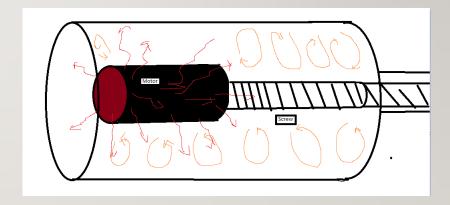


Figure 9: Mechanisms in fully deployed condition

II ANALYSIS 3: THERMAL ANALYSIS

• Equation for conduction for the aluminum.

$$\bullet \quad q'' = k * \frac{T_1 - T_2}{L}$$


•
$$q'' = 177 \frac{W}{K*m} * \frac{(293-343)K}{1m}$$

•
$$q'' = -8850 W/m^2$$

Equation for convection in the actuator

$$\bullet \quad q'' = h * (T_S - T_m)$$

Experiment to be conducted on April 22,2019

12 ANALYSIS 4: POWER ANALYSIS

- Conversion of electrical power into mechanical power by DC motors
- More power is in association with large size motor.
- Analysis of Mechanical power due to work load.
- 25 Pounds x 4.448 Nt = 111.2 Nt
- Mechanical power output of III.2Nt x 0.0254rpm = 2.8245 W.
- Relationship of current and torque $E_f I_a = \Gamma \omega_m$
- Analysis of Electrical power due to current and voltage.
- 12V DC and 0.01 horsepower for an actuator
- Taking in account of resistive losses, more power is required.

13 CUSTOMER REQUIREMENT

- Actuator Size (4"x4"x12" in)
- Actuator Weight (>2 lb.)
- Overall Travel (1.5" in)
- Force to move Rod (>25 lb.)
- Motor power (12 Volt)
- Duty Cycle (100%)
- Actuation Speed (>I in per sec)

Christian Riggs

14 SCHEDULE

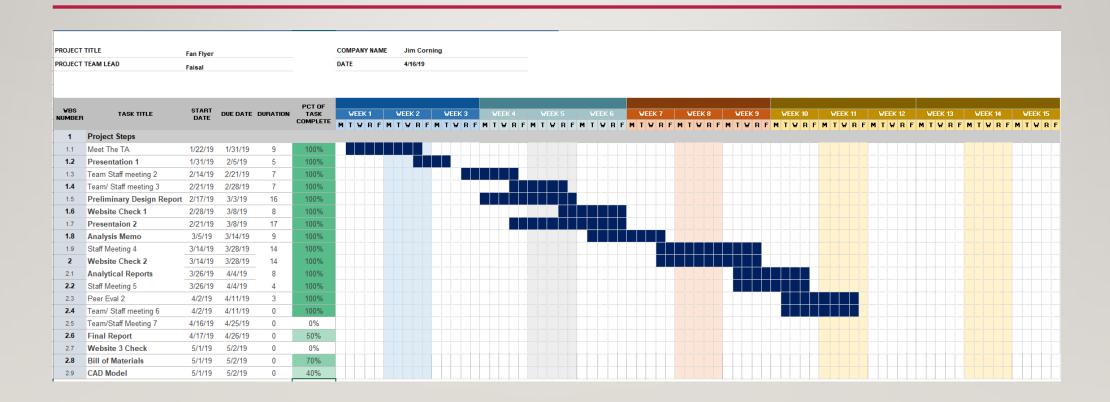
- We are currently up to date.
 - Remaining assignments
 - Team staff meeting
 - BOM, CAD package, Final Report
- These will be complete in the upcoming days
- Full Gantt Chart in Appendix A

PROJECT TITLE	Fan Flyer	COMPANY NAME	Jim Corning
PROJECT TEAM LEAD	Faisal	DATE	4/16/19

	VBS	TASK TITLE	START	DUE DATE	DURATION	PCT OF TASK		v	EE	V 1			v	EEK	2			WE	EK:	2	
	NUMBER	IASK IIILE	DATE DOEDATE L		DUNATION	COMPLETE		_	_	_	F	м			_	F	М	_	_	_	F
	1	Project Steps																			
	1.1	Meet The TA	1/22/19	1/31/19	9	100%															
	1.2	Presentation 1	1/31/19	2/5/19	5	100%															
	1.3	Team Staff meeting 2	2/14/19	2/21/19	7	100%															
	1.4	Team/ Staff meeting 3	2/21/19	2/28/19	7	100%															
	1.5	Preliminary Design Report	2/17/19	3/3/19	16	100%															
	1.6	Website Check 1	2/28/19	3/8/19	8	100%															
	1.7	Presentaion 2	2/21/19	3/8/19	17	100%															
	1.8	Analysis Memo	3/5/19	3/14/19	9	100%															
	1.9	Staff Meeting 4	3/14/19	3/28/19	14	100%															
	2	Website Check 2	3/14/19	3/28/19	14	100%															
	2.1	Analytical Reports	3/26/19	4/4/19	8	100%															
	2.2	Staff Meeting 5	3/26/19	4/4/19	4	100%															
	2.3	Peer Eval 2	4/2/19	4/11/19	3	100%															
	2.4	Team/ Staff meeting 6	4/2/19	4/11/19	0	100%															
	2.5	Team/Staff Meeting 7	4/16/19	4/25/19	0	0%															
	2.6	Final Report	4/17/19	4/26/19	0	50%															
	2.7	Website 3 Check	5/1/19	5/2/19	0	0%															
-	2.8	Bill of Materials	5/1/19	5/2/19	0	70%															
1	2.9	CAD Model	5/1/19	5/2/19	0	40%															

15 BUDGET

- Budget \$500.00
- Anticipated expenses \$475.00
 - Manufactured Parts \$100
 - Materials \$225
 - Motor \$100
 - Miscellaneous \$50
 - Total remaining anticipated \$25
- Expenses to date \$6.76
- Remaining Budget \$493.23


Project Budget Reporting

PROJECT TITLE	Fan Flyer				CLIENT	Jim Corning		
PROJECT TEAM LEAD	Faisal				DATE	4/17/19		
•								
Total Budget :	\$	500.00						
*NOTE THIS BUDGET PLAN IS A ROUGH ES	TIMATE							
Expenses	Plan (\$)		Actual	(\$)	Date Recorded	Purchaser		
Manufactured parts	\$	100.00	\$	6.76				
3D Part	\$	10.00	\$	6.76	4/15/2019	Khaled		
	\$	-	\$	-				
	\$	-	\$	-				
	\$	-	\$	-				
	\$	-	\$	-				
Aluminum Bar	\$	75.00	\$	-				
Steel Bar	\$	150.00	\$	-				
Materials used	\$	50.00	\$	-				
Motor	\$	50.00	-	-				
Unused	\$	75.00	\$	-				
Total For parts	\$	500.00						

QUESTIONS?

18 APPENDIX A : GANTT CHART

