SAE Aero Regular: Presentation 1

Jacob Cong, Chris Galus, Alex Klausenstock, Nathan Valenzuela

Project Description

Since 1986 SAE has put on an annual design competition for undergraduate students that provides them with real life engineering challenges.

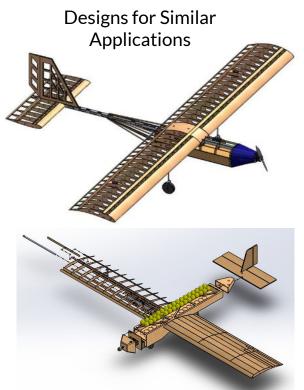
There are three classes of competition regular, micro, and advanced. This team will be working on the regular design, and the competition is split up into a report, presentation, and flight trials at the event. A high percentage of score is allocated to the written design report and oral presentation to put emphasis on communication skills.

Figure 1: SAE logo

Figure 2: Past NAU team

The western competition is held at an airfield in Encino, CA and will take place from April 3rd-5th this year.

Main requirements for regular class this year include:


- Take off/land on 100 foot runway
- Able to carry oversized cargo (soccer balls and steel weights)
- 10 foot max wingspan
- 1000 Watt power limiter

Background / Benchmarking (Full System)

State of the Art

NISIME

Jacob Cong

Benchmarking (Sub-System)

Wing Shape

Empennage

Landing Gear

[7][8][9]

Literature Review

Team has been doing research since before this semester began and utilized many different online resources. Areas of focus include:

- Propeller Design Alex
- Airfoil shape Alex/Nate
- Wing shape Jacob/Chris
- Empennage style Nate/Jacob
- Flap/elevator/rudder construction Nate/Jacob
- Overall flight stability Chris/Jacob
- Radio control Alex/Chris

Discussions with individuals that have previously competed, and review of the submitted reports from previous NAU teams online research

The team will be studying from Fundamentals of Aerodynamics by John Anderson, and will also utilize the Mechanical Design Process text provided by Dr. Oman

Figure 10: NACA airfoil

Customer Needs & Engineering Requirements

- SAE Aero
 - The Competition
- Customer Needs Categories:
 - Scoring (Client: SAE)
 - General (Client: NAU Capstone)
 - Miscellaneous (Client: Team)

Customer Needs

Customer Weights

Ball Capacity 10
Steel Weight Capacity 9

Low Wing Span 9
Low Cargo Bay Length 9

Lack of Crash 10

Cargo Accessability

Robust Design 10

Reliable Design 9

Inside Budget 10

Safe to Operate 10

Takeoff & Landing Capability 1

Control Authority

Constructability !

			Pi	roject:	SAE	Aero	Regu	ılar C	lass					
System HoQ Date: 9/17/2019														
	-	Technical Requirements												
Customer Needs	Customer Weights	Size	Weight	Power	Cost	Liff	Low Drag	Ease of Assembly/Repair	Velocity	Turning	Load/Unload Time	Cabin Length	Wing Span	Success Rate
Ball Capacity	10	9	3	9	3	3	9		3		9	9	1	1
Steel Weight Capacity	9	3	9	9	1	9	9		3		3	1	1	1
Low Wing Span	9	9	3		3	9	9	1	3	3			9	3
Low Cargo Bay Length	9	9	3				9	3	9	1	3	9		
Lack of Crash	10		9	9	3	9	9		3	9			1	9
Cargo Accessability	6	3	3	1	1	1	1	9			9			1
Robust Design	10	1	1	1	3			1					3	3
Reliable Design	9	1	1	1	3	3	3	1		3	1			3
Inside Budget	10	1		1	9									
Safe to Operate	10													9
Takeoff & Landing Capability	10	9	9	9	3	9	9		9	1				3
Control Authority	7	3	3	9	3	3			9	9				9
Constructability	5	9	1		9	1	1	9		3	3	3	3	
Technical Requirement Un	its	in^3	sql	Kw	€	ಖ	೦	mim	hdm	rad/s	v	.⊑	.⊆	%
Technical Requirement Targ	ets	13824	35	_	1000	55	10	15	25	8.0	120	10	96	06
Absolute Technical Importan	ice	482	408	449	345	431	551	154	348	241	222	195	155	382

Relative Technical Importance ○

- Engineering Requirements
 - Measurable metrics of CN's

Alex Klausenstock

Customer Needs & Engineering Requirements

- Regular Class aircraft are limited to a maximum wingspan of 120 inches.
- . The Cargo Bay shall fully enclose the Spherical Cargo and the Regular Boxed Cargo. Spherical Cargo may not be exposed to airstream at any point in flight.
- . Only one Cargo Bay is allowed in a Regular Class aircraft.
- . The Spherical Cargo* payload must consist only of unmodified Size 5 Soccer Balls. . The Cargo Bay must accommodate a minimum of one (1) Spherical Cargo for each flight

Weight . Gross take off weight may not exceed 55 lb

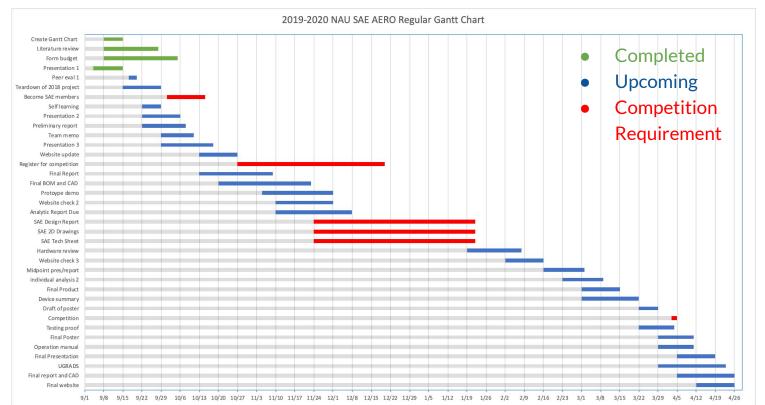
- . Required: 6 cell (22.2 volt) Lithium Polymer (Li-Poly/Li-Po) battery pack. Minimum requirements for Li-Po battery: 3000 mAh, 25c
- . The Radio battery pack must be controlled by a clearly visible and properly mounted on off switch on the external surface of the aircraft, located at least 12" from the Prop.
- . The aircraft shall be propelled by a single electric motor (no multiple motors). . Gearboxes, belt drive systems, and propeller shaft extensions are allowed if a one-to-one propeller to motor RPM is maintained. The prop(s) must rotate at motor
- . Regular Class aircraft must be powered by a commercially available Lithium-Polymer
- . A battery pack with a minimum capacity of 1000 mAh must be used for the radio system. . The radio battery pack must be a LiPo or LiFE type battery.
- . Battery voltage regulators are allowed for the radio battery.

Power limiter:

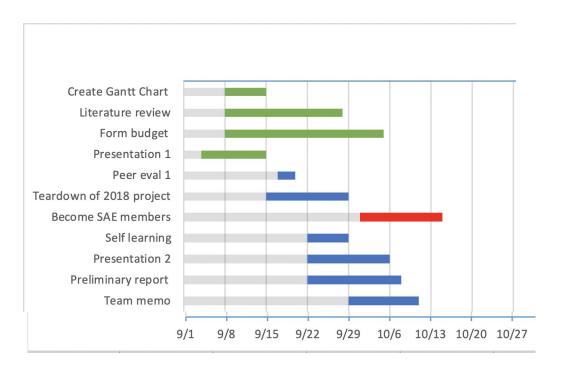
- = All Regular Class aircraft must use a 2019 V2 or newer version 1000-watt power limiter from the official supplier, Neumotors.com.
- The limiter must be fully visible and easy to inspect = Only battery, receiver, speed control, arming plug, and limiter are allowed within
- the power circuit.
- . Red Arming Plug Must be present
 - = Red arming plug be located 40-80% of the aircraft length from the propeller. = Red arming plug must be located on top of the wing or fuselage, and externally mounted
 - = Red arming plug must be clearly visible

 - = Internal component of Red arming plug may not have more than one male lead
 - . Disconnecting Wiring harness to arm and disarm a system will not be allowed

Materials


Remaining Rules

We've also compiled a categorized list of SAE rules



Schedule

Schedule

- Completed
- Upcoming
- Competition Requirement

	NAU SAE Preliminary Budget						
	Funding	Note					
	\$3,000.00	Gore Donation					
	Costs	Note					
Gore Donation Applicable	\$1,100.00	SAE Competition Entry Fee					
	\$1,000.00	2017-18 Plane Estimate (\$1100)					
	\$100.00	Required Stickers and Gore Branding					
Summed	\$2,200.00	Gore Funding Usage. For use of plane parts, requirements, and construction only					
Gore Donation Non- Applicable	\$500.00	2 Nights - Hotel					
	\$250.00	Gas (1200 miles,17mpg, 3.50\$ per gallon)					
	\$25.00	SAE Membership (4 needed)					
	\$75.00	Academy of Model Aeronautics License					
	\$150.00	Team Shirts and Vehicle Markings					
Additional Funds Required	\$1,075.00	Not deductable from Gore donation, this is our target fund raising goal for memberships and travel expenses					

Leftover	Note
\$800.00	Gore Funding Usage. For use of plane parts, requirements, and construction only
Fundraising Goal	Note
\$1,200.00	Total fund raising goal. Trip expenses

Budget

- Current Funding
 - Allowed Uses
- Costs
 - o Gore Applicable
- Required Funds
 - Trip Expenses & Memberships
- Fundraising Goal
 - Options

Q/A

Work Cited

- [1] https://www.sae.org/attend/student-events/sae-aero-design-east
- [2] https://www.cefns.nau.edu/capstone/projects/ME/2018/SAEAero/hairstyle.html
- [3] http://www.bush-planes.com/
- [4] https://sabushpilot.com/best-plane-for-the-bush/
- [5] https://www.cefns.nau.edu/capstone/projects/ME/2018/18F5_SAEAeroReg/
- [6] https://www.cefns.nau.edu/capstone/projects/ME/2016/SAEAeroDesign/
- [7] https://www.aircraftcompare.com/types-of-aircraft-wings/
- [8] http://what-when-how.com/flight/tail-designs/
- [9] https://aerotoolbox.net/design-aircraft-tail/
- [10] https://www.youtube.com/watch?v=x81I-YhhN-o

