Meeting Minutes 9/20/17

Need to

- Get access to the ME capstone room
- Ask Dr. Lerner about the run time of the device
- Everyone put research in annotated bibliography form on the drive so we can all access research.

System Level Systems

Since our device is not in existence use systems that represent it as closely as possible.

Use the following three main systems to compare to:

- Exoskeleton
 - o Existing ankle exoskeleton devices
- Orthotics
 - o Existing supports and braces used for similar applications as our device
- Electronics
 - Electronic systems of exoskeletons etc..

Subsystems

- Electronics/controls:
 - o Sensors
 - o Microcontroller
 - o Power
 - o Etc
- Exoskeleton:
 - Propulsion methods (moving the foot off the ground)
 - Motor/drive system (where mechanical energy is coming from)
 - o Bowden cable system (how the cables are utilized)
- Orthotics:
 - Support of the foot
 - o Attachment (of mechanical parts)
 - Comfort/interaction with the body

Customer Requirements:

- Bowden cable system
- o Attachment to calf
- Interface with the foot

- Scalable for foot sizes
- o Adjustable for different severity levels
- Easy on/off
- Uses a torque sensor
- Uniform weight distribution on bottom of foot
- o Soft interaction between the foot and the floor
- Light weight
- o Sense force
- Works on children ages 5-12
- Works on mild cases of quinines gate in CP patients
- o Safe
- o Reasonable run time

Engineering Requirements

- Actuated ankle motion of 25-30 degrees
- Static ankle adjustment 0-30 degrees
- Light weight (entire system 0.5kg)
- Easy on/off (only one mode of securing. i.e. Velcro, zipper, laces...)
- \circ 10-15N of propulsion provided from the device to the ground
- Sensor accuracy 10-20%
- o Run time 2 hours
- Motor/actuator force provided through cables(needs to eventually give 10-15N of propulsion)
- Power supply (to be determined)
- For foot sizes (age range 5-12 years old)

Black box model – see scanned document.

To Do by Monday:

- Project description, schedule, and budget section write up (Hannah)
- Research of orthotics systems and subsystems(Hannah)
- Functional Decomposition diagram draft and section write up (Azalea)
- o Customer and engineering requirements, and draft of QFD (Brandon)
- Research section write up (Ethan)
- Exoskeleton and electronics systems and subsystems research and write up (Robert)
- Whole group review functional diagram
- Whole group fill out QFD