Collegiate Wind Competition 2017-2018

Mechanical Design

Devon Hardy,
Dakota Sallaway,
Spencer McMahon,
Jacob Peterson,
Soud Alsahli,
Kory Joe

- Project Description
- Budget
- Design Requirements
- Design Subsystems
- Material Selection

- Design Process
- Manufacturing Process
- Final Design
- Testing Procedures
- Data Collection

COLLEGIATE WIND COMPETITION U.S. DEPARTMENT OF ENERGY

Collegiate Wind Competition (CWC)

- Event Sponsors:
 - U.S. Department of Energy (DOE)
 - National Renewable Energy Laboratory (NREL)
- Clients:
 - David Willy
 - Karin Wadsack
- Team Goal:
 - Build & Test a Small Scale Wind Turbine.

Budget

• Build/Design:

o GORE: \$3000

Traveling:

• PAY 'N TAKE: \$60.00

O BIGFOOT BBQ: \$150.00

o ASNAU: \$923.08

Table 1: Building Budget for Mechanical Team

Total	Expenses	Remaining
\$1500	\$756.82	\$743.18
\$3000	\$1905.43	\$1094.57

Design Requirements

- Turbine Size: 45cm x 45 cm x 45 cm.
- Operating Wind Speed = 2 20m/s ± 2m/s
- Cut-In Wind Speed = 2 m/s 5 m/s
- Cut-Out Wind Speed = 20 ± 0.5m/s
- Power Generation > 10 WATTS @ 10 m/s
- Turbine Efficiency = 35% ± 5%

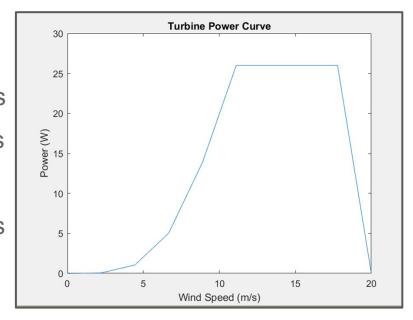


Figure 1: Turbine Power Curve

Design Subsystems

- Blade Design
 - o Devon
- Hub Design
 - o Spencer
- Shaft
 - Soud/Kory
- Braking System
 - Jacob

- Yawing Mechanism Design
 - Jacob
- Nacelle Design
 - o Dakota
- Tower Design
 - o Dakota
- Base-plate Design
 - Dakota

3D Print

- Blades
 - **ULTEM 9085**
- Active-Pitching Hub
 - ABS 3D Filament

Structural Metals

- Blade Roots
 - T304 Stainless Steel
- Tower
 - 4130 Steel
- Baseplate
 - A36 Steel

Lightweight Metals

- Nacelle
 - 6061-T6 Aluminum
- Yaw Fins
 - 6061-T6 Aluminum
- Shaft
 - 7075-T6 Aluminum

Braking System

- Disk: Zinc Coated Steel
- Pads: Rigid Molded Non-asbestos

Design Process

- CAD design and modeling
- Programming verification
- Prototyping
- Redesign and prototyping
- Final design and approval

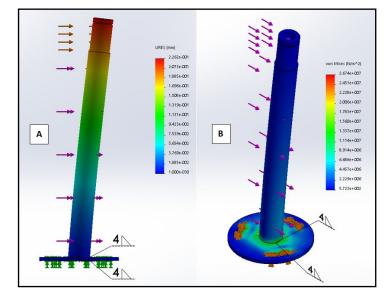


Figure 2: SOLIDWORKS FEA simulation

Manufacturing Process

Machines Used

- CNC Mill
- Manual Mill
- Lathe
- 3D Printer

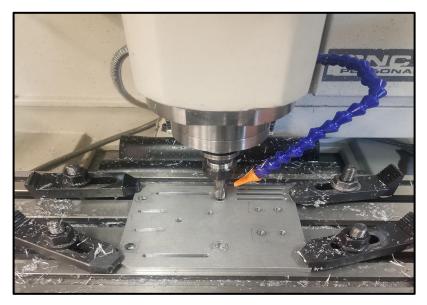


Figure 3: Top Nacelle on the CNC

Final Design

- Latching Solenoid Braking system
- Dual fin Passive yawing system
- Multi-layered Nacelle
- Direct Drive Shaft
- Active Pitching Hub

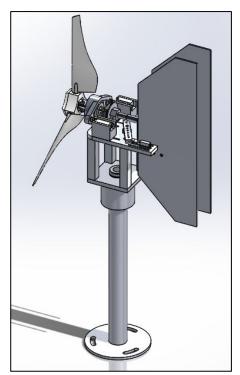


Figure 4: Final CAD Design

Data Collection

- Developed a LabVIEW data acquisition program
- Created for measuring wind tunnel wind speeds
- Used pre-created programs to produce functional program for our testing purposes

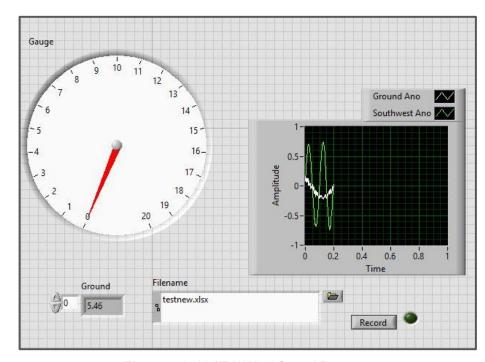


Figure 5: LabVIEW Wind Speed Program

Testing

Procedure

- Testing at an off campus wind tunnel provided by Southwest Windpower
- Redesigned wind tunnel fixture
- Redesigned anemometer mount for data acquisition
- Testing single subsystems before testing the system as a whole

Results

- Blades start up at a wind speed of 5 m/s
- Brakes can effectively stop the turbine from spinning up to a wind speed of 7 m/s

Data Collected

Bench Testing

Cut-in Steady-State 2.5V Vin 0.50V Vout 2.0V 5.0V lin 1.0A 5.0A lout 0.50A 2.5A Pout 1.0W 12.5W

Wind Tunnel Testing

	Cut-in	Steady-State
Vin	0.11V	1.75V
Vout	1.0V	5.0V
lin	1.81A	2.85A
lout	0.20A	1.0A
Pout	0.20W	5.0W

Questions?