Collegiate Wind Competition 2017-2018 Electrical Team Yousef Alali Alex Dahlmann Aaron DeLuca **Evan Heiland Benjamin Macleod** COLLEGIATE NORTHERN **Tristan Scott ARIZONA** College of Engineering, UNIVERSITY Forestry, and Natural Sciences DEPARTMENT OF ENERGY

Qian Zhao

Project Description

• Event Sponsors:

- United States Department of Energy (DOE)
- National Renewable Energy Laboratory (NREL)

• Event Objective:

 Increase college students' knowledge of wind turbines to satisfy the growing demand

• Electrical Team Objective:

 Work with Mechanical Team to design, build, and test a wind turbine for Collegiate Wind Competition 2018 (CWC18).

Figure 1: CWC Engineering Team

Project Description

• Components of Competition:

- Power Curve Task
- Control of Rated Power and Rotor Speed Task
- Cut-in Wind Speed Task
- Durability Task
- Safety Task

• Design Requirements:

- DOE provided rules and regulations for the CWC18 outlining the competition
- Engineering Requirements were established using this document

Table 1: Engineering Requirements and Targets[1]

Engineering Requirements	Target
NEMA Electrical Rating	Type 1
Required Voltage at PCC	5V-48V
Energy Storage Input Rating	<16V
Rated Power	30 ± 2W.

Project Description

Electrical Subsystems:

- Generator
- Rectifier & Dump Load
- Boost Converter
- Buck/Boost Converter
- Controls

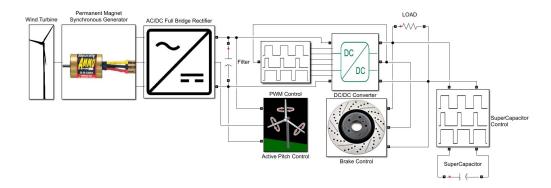


Figure 2: Overview of Electrical System

Generator

- Ammo 1530KV inrunner generator
- Optimal for low torque, high RPM applications
- Low voltage output of 0-3V suited for durability test

Figure 3: Ammo Generator

Rectifier & Dump Load

- Diode:
 - Forward Voltage: 0.28 V
- Capacitor:
 - 100 uF
- Dump Load:
 - 0.27 ohm

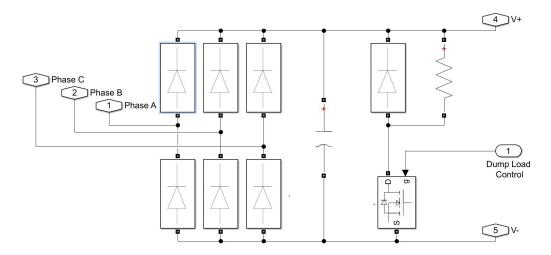


Figure 4: Rectifier and Dump Load

Boost Converter

- Three Channel Interleaved Synchronous Boost Converter
 - Each channel rated for 5A input current.
 - Three channels to make converter 15A rated input current.
 - Each MOSFET turns on & off with Pulse Width Modulated signals.
 - Each channel has a pair of power MOSFETs that have opposite PWM signals.
 - Each pair of MOSFETs PWM signals are 120° out of phase from each other.

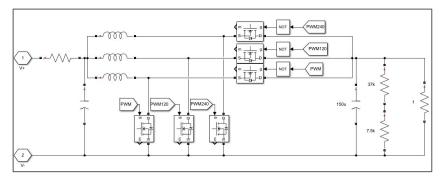
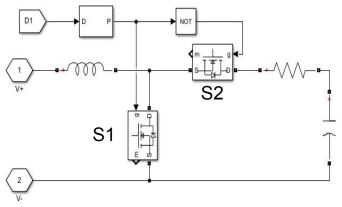
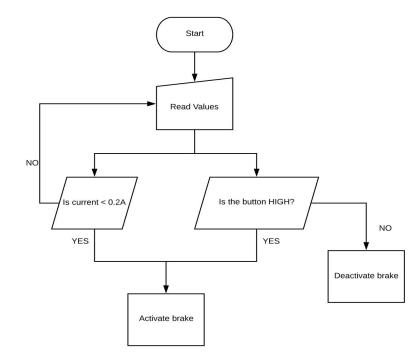
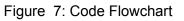


Figure 5: Three Channel Boost Converter

Buck/Boost Converter

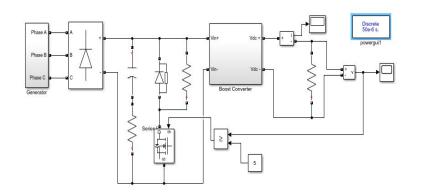
- Synchronous Bi-Directional Buck-Boost Converter
 - Boost the voltage to 12V to charge ultracapacitor faster
 - Bucks the voltage back down to a regulated 5V
- Two State Operation
 - Charge (S1 High and S2 Low)
 - Discharge (S1 Low and S2 High)


Figure 6: Bi-Directional Buck-Boost Converter

Controls

- Brake system:
 - Current sensor is used to read the Amps.
 - 4-channel relay is connected to the Solenoid
 - Button to control the brake.
 - Arduino used to read values and controlling.
- Active hub:
 - Linear actuators.
 - Voltage divider to sense voltage.



Design Process

• Simulink Modeling

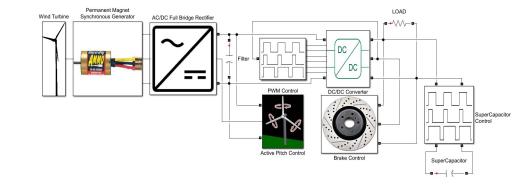


Figure 8: Overall Simulink Prototype

Figure 9: Final Design System

Design Process

• Prototyping

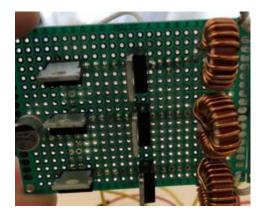


Figure 10: Boost Converter Rev.1



Figure 11: Boost Converter Rev.2

Manufacturing Process

- PCB Manufacturing
 - Outsourced to Advanced Circuits [2]
- Soldering components
 - Through Hole
 - Surface Mount

Figure 12: Through Hole soldering

Figure 13: Surface Mount soldering

Figure 14: Through Hole MOSFET

Figure 15: Surface Mount MOSFET

Final Design

- Components on PCB Rev. 2
 - Rectifier
 - Dump Load
 - Gate Drivers
 - Boost Converter
 - Buck/Boost Converter
 - Arduino Due
 - Peripherals
- Off Board Components
 - Relays
 - Ultra Capacitor
 - Resistive Load

Figure 16: PCB Rev. 2

Testing Procedures

- Bench testing
 - Consisted of simulating cut-in speed and steady-state wind speed with dynamometer and power source
- Testing single subsystems before testing the system as a whole
 - Generator
 - Converters
 - Actuators
 - Solenoid
- Testing at an off campus wind tunnel
 - Power curve
 - Braking
 - Durability

Data Collected

Bench Testing

• Wind Tunnel Testing

	Cut-in	Steady-State		Cut-in	Steady-State
Vin	0.50V	2.5V	Vin	0.11V	1.75V
Vout	2.0V	5.0V	Vout	1.0V	5.0V
lin	1.0A	5.0A	lin	1.81A	2.85A
lout	0.50A	2.5A	lout	0.20A	1.0A
Pout	1.0W	12.5W	Pout	0.20W	5.0W

Experience Gained

- Power Electronics Design
- Simulink Modeling
- Surface Mount Soldering
- Component Selection
- PCB Design
- Knowledge of Wind Turbines

References

[1] Energy.gov. (2018). 2018 Collegiate Wind Competition Rules and Requirements | Department of Energy. [online] Available at: https://www.energy.gov/eere/collegiatewindcompetition/downloads/2018-collegiate-wind-competition-rules-and-requirements [Accessed 15 Sept. 2017].

[2] 4pcb.com. (2018). Printed Circuit Board Manufacturer & PCB Assembly | Advanced Circuits. [online] Available at:

http://www.4pcb.com/ [Accessed 27 Apr. 2018].

COLLEGIATE WIND COMPETITION U.S. DEPARTMENT OF ENERGY

Questions?