Lerner Exoskeleton Actuator

Team:18F26

Torki Alhaqan Fawaz Almubarak Mohammad Alali Barjes Alenezi Humood Aljabri

(project Manger)
(Document Manager& CAD)
(Web Developer)
(Client Contact)
(Budget Licenses)

Fawaz

Content:

Project Description
 Black box & Functional Model
 Designs Considered:
 Advantages and Disadvantages
 Design Selected
 Pugh Chart and Decision matrix
 Schedule & Budget

Project Description

- Design a series elastic actuation system for a robotic lower-extremity exoskeleton
- Cerebral palsy : is a neurological disorder that affects a child's from moving and it is caused by brain damage
- Our device should:
 - Help people with disability
 - Provide clinical gait .

Definition of Exoskeleton:

The Exoskeleton is device used to help and improve the human life.

Where we can use it?

We can use the Exoskeleton on the outer human body.

• Our Goal:

modify the current Exoskeleton to have a clincal movement for the ankle (using the engineering requirements)

Client

Zach Lerner, Ph.D.

- Director of NAU's Biomechatronics Lab
- Our Stakeholders are people with disability
- ► Why is it important?
- ► To help people with disability needs

Black Box:

Figure 1: Black Box

Barjes

Decomposition Model

Figure 2: Functional Model

Barjes

Design Considered #1

- Advantages?
- last for a long time
- can be adjusted easily
- > Disadvantage?
- We might add more than one part
- Hard to assemble

Figure 3: design #1

10/25/

7

Design Considered #2

- Advantages?
- it will help the patient when he slips
- it has an adjustable length
- > Disadvantage?
- Increasing the design length
- increasing in weight

8

Design Considered #3

Advantages?

- will not change pulley radius
- More power efficient
- Disadvantages?
- It would work opposite of the thing we are aiming for
- Springs are parallel

9

Pugh Chart

Design 2 is the simplest design, so we chose it to be our datum.

Concept										
Criteria	Design									
	1	2	3	4	5	6	7	8	9	10
Measure	S	D	+	-	S	S	+	+	S	+
torque										
Lightweight	-	D	S	S	+	-	S	-	S	-
Clinical gait	-	D	+	+	S	S	+	S	+	+
Noninvasive	S	D	+	S	-	+	+	+	+	+
Simple	S	D	+	S	+	S	-	S	-	-
Σ+	0	D	4	1	2	1	3	2	2	3
Σ-	2	D	0	1	1	1	1	1	1	2
ΣS	3	D	1	3	2	3	1	2	2	0

10

Figure 6:Pugh chart

Decision Matrix

11

Weight			Desi	gn		Des	ign		De	sign
Criterion		3		7		10				
Provide Torque	.429	90		38.61	70	\nearrow	30.03	83	/	35.607
Specify Material	.166	75		12.45	82	\nearrow	13.612	79	/	13.114
Spring Location	.132	80	\nearrow	10.56	90	\nearrow	11.88	85	/	11.22
Noninvasive	.151	90	\nearrow	13.59	85	\square	12.835	80	\nearrow	12.08
Not complicated design	.122	70	\searrow	8.54	80	\searrow	9.76	85		10.37
Totals	1		$\overline{\ }$	83.75			78.117		\nearrow	82.391
Relative Rank			$\overline{\ }$	1		$\overline{\ }$	3		\nearrow	2

Figure 7:Decisison Matrix

Design Selected #1

Figure4

15

	25/1
Τ	able [1] $^{\circ}$
Customer Requirements	Description
Measure torque	0-7 Nm out of the motor 0-21 Nm out of the pulley
Weight	Patient 50 lbs-150lbs
Spring location	design selection for the spring
Non-invasive	Dose not contact the ankle
simple	30% complicated design

Torki

Design Selected #2

Figure3

Tabl	e [2]
Customer Requirements	Description
Measure torque	0-7 Nm out of the motor 0-21 Nm out of the pulley
Weight	Patient 50 lbs-150lbs
Spring location	design selection for the spring
Non-invasive	Dose not contact the ankle
simple	20% complicated design

13

Torki

Gantt Chart

Figure 8: Gantt Figure

Mohammad Alali

Gantt Chart

Table [3]

Task Name	Team member	Start Date	End Date	Duration
client meeting	ALL	9/10/2018	9/13/2018	3
group meeting	ALL	9/15/2018	9/20/2018	5
Background Reserch	ALL	9/10/2018	9/26/2018	16
presntation 1	all	9/15/2018	9/27/2018	12
ordering parts	Barjes&Humood	9/28/2018	10/28/2018	30
staff meeting	All	10/13/2018	10/20/2018	7
first draft proposal 1	ALL	10/8/2018	10/21/2018	13
Staff/Team Meetings	ALL	10/24/2018	10/26/2018	2
peer evaluation 1	individual	10/18/2018	10/21/2018	3
Presentation 2: Concept Gen and Eval	ALL	10/10/2018	10/24/2018	14
Staff/Team Meetings	ALL	11/1/2018	11/7/2018	6
Presentation 3: Final Presentation	ALL	11/8/2018	11/21/2018	13
Staff/Team Meetings	ALL	11/25/2018	11/28/2018	14
Prototype and CAD Demo,BOM	Fawaz &Torki	11/1/2018	12/12/2018	41
peer evaluation 2	individual	11/20/2018	11/21/2018	1
Final Report	ALL	10/1/2018	11/28/2018	58
peer evaluation 3	individual	12/8/2018	12/12/2018	4
web devolping site	Mohammad alali	9/20/2018	12/12/2018	83

Mohammad Alali

Budget

Table [4]					
Part	Price	Total			
Motor Ec-4pole22(311536)	\$713.45				
gear GP32C(166945)	\$157.15	\$870.60 from \$2000			
Manufacturing and spring	~\$600	\$1,470.60			

0/25/18

[1] Small dc motors and drive systems | maxon motor. [Online]. Available: https://www.maxonmotorusa.com/maxon/view/content/index. [Accessed: 24-Oct-2018].

Any Questions ?

Mohammad Alali