Lerner Exoskeleton Actuator

Team:18F26

Torki Alhaqan Fawaz Almubarak Mohammad Alali Barjes Alenezi Humood Aljabri

(project Manger)
(Document Manager& CAD)
(Web Developer)
 (Client Contact)
 (Budget Licenses)

Torki Alhaqan

Content:

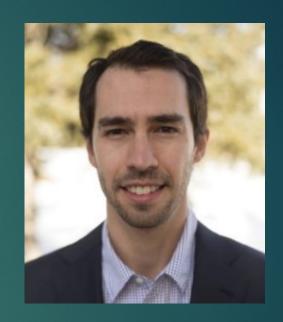
Project Description

- Background & Benchmarking
- Customer & Engineering Requirements
- Schedule & Budget

Project Description

- Design a series elastic actuation system for a robotic lowerextremity exoskeleton
- Cerebral palsy : is a neurological disorder that affects a child's from moving and it is caused by brain damage
- Our device should:
 - Help people with disability
 - Provide clinical gait .

• Our Goal:


modify the current Exoskeleton to have a flexible movement for the knee(using the engineering requirements)

Torki Alhaqan

Client

Zach Lerner, Ph.D.

- Director of NAU's Biomechatronics Lab
- Our Stakeholders are people with disability
- ► Why is it important?
- ► To help people with disability needs

Background and Benchmark

Definition of Exoskeleton:

▶ The Exoskeleton is device used to help and improve the human life.

Where we can use it?

We can use the Exoskeleton on the outer human body.

Exoskeleton applications & different types

► Applications:

- > You can apply it in sever fields:
- Civilian
- Medical
- Military
- Different types:
 - ▶ The types of an Exoskeleton is plenty.
 - you can create an one depending on the case.

Background and Benchmark

 Vanderbilt University Exoskeleton (Figure 1): 1)spinal cord injuries

2)Use the most upper body strength to walk

• Arizona State University Exoskeleton (Figure 2):

1) ankle device for stroke recovery therapy

2) fits perfectly and calibrated to avoid injury

Figure 1: Vanderbilt University
[1]

Figure2: Arizona State University [2]

7

Background and Benchmark

Eksovest (Figure 3):
1) Power without pain
2) over head works

Figure3:eksobionics[3]

8

Fawaz Almubarak

Customer & Engineering Requirements

- Design requirement from sponsor
- 1. To Install a Motor and a Gear box
- 2. Find the best location to install the spring
- 3. Find an exact material for the spring
- 4. Design a spring to meet the requirement

Figure4: CAD

Customer & Engineering Requirements

Table [1]				
Customer Requirements	Engineering Requirements			
Measure the required torque	Provide 0-7Nm of torque			
 Make the design lightweight 	Specify the material			
 Make the people with disability walk normally 	 Find the perfect location for the spring 			
 It must be noninvasive 	 Must not contact the ankle 			
 Its must be simple as possible 	Not complicated design			

House of quality (QFD)

Table [2]

Engineering Requirements Customer Requirements	Importance	Provide Torque	Specify Material	Perfect location for spring	Must not contact with ankle	Not complicated design
Measured the required torque	9	9	3	1	1	1
Make the design lightweight	3		1	3	3	3
Make the people with disability walk normaly	3	1		1	3	1
It must be non-invasive	1	3	1	3	1	3
It must be simple as possible	1	1	3	3	3	1
Technical Importance: Raw Score		88	34	27	31	25
Technical Importance: Relative Weight		42.9%	16.6%	13.2%	15.1%	12.2%
Techanical Target Value		7	-	-	-	-
Units		Nm	-	-	-	-

11

0/5/18

Barjes Alenezi

Gantt Chart

Figure 5: Gantt Figure [5]

Mohammad Alali

Gantt Chart

Table [3]

Task Name	Team member	Start Date	End Date	Duration
client meeting	ALL	9/10/2018	9/13/2018	3
group meeting	ALL	9/15/2018	9/20/2018	5
Background Reserch	ALL	9/10/2018	9/26/2018	16
presntation 1	all	9/15/2018	9/27/2018	12
ordering parts	Barjes&Humood	9/28/2018	10/28/2018	30
staff meeting	All	10/13/2018	10/20/2018	7
first draft proposal 1	ALL	10/8/2018	10/21/2018	13
Staff/Team Meetings	ALL	10/24/2018	10/26/2018	2
peer evaluation 1	individual	10/18/2018	10/21/2018	3
Presentation 2: Concept Gen and Eval	ALL	10/10/2018	10/24/2018	14
Staff/Team Meetings	ALL	11/1/2018	11/7/2018	6
Presentation 3: Final Presentation	ALL	11/8/2018	11/21/2018	13
Staff/Team Meetings	ALL	11/25/2018	11/28/2018	14
Prototype and CAD Demo,BOM	Fawaz &Torki	11/1/2018	12/12/2018	41
peer evaluation 2	individual	11/20/2018	11/21/2018	1
Final Report	ALL	10/1/2018	11/28/2018	58
peer evaluation 3	individual	12/8/2018	12/12/2018	4
web devolping site	Mohammad alali	9/20/2018	12/12/2018	83

13

Mohammad Alali

Budget

Table [4]				
Part	Price	Total		
Motor Ec-4pole22(311536)+gear GP32C(166945)	\$713.45			
Manufacturing +spring's	~\$600			
		\$1313.45		

References:

- 1. RobAid. (2018). Wearable exoskeleton helps paraplegics walk | RobAid. [online] Available at: http://www.robaid.com/bionics/wearable-exoskeleton-helps-paraplegics-walk.htm [Accessed 22 Sep. 2018].
- The Arizona State Press. (2018). ASU engineering the future in wearable robotics. [online] Available at: http://www.statepress.com/article/2018/04/spscience-asu-engineering-the-future-in-wearable-robotics [Accessed 22 Sep. 2018].
- 3. Ekso Bionics. (2018). EKSOWORKS & FORD PARTNERSHIP Using Exoskeleton Technology | Eksobionics.com. [online] Available at: https://eksobionics.com/eksoworks/ford/ [Accessed 22 Sep. 2018].

16

)/5/18

Any Questions ?

Mohammad Alali