
KINETIC SCULPTURE

Ahmad Alharbi Mishary Alhooli

Ahmad Altheyaib

Abdulaziz Hussain

Mahmoud Shaban



Figure 1: Idea being influenced from

Introduction

- Project aim is to make a Kinetic Sculpture
- Sculpture
 - An artificial man-made structure for any living or non-living thing
- Kinetic
 - Any object in motion or moving
- Kinetic Sculpture
 - An artificial structure which shows movement

General Description

- Team is working on Kinetic Sculpture with aim to show some interest towards the Mechanical Engineering Department
- To provide physical example of Mechanical Engineering Principles
- Using an entertaining interactive display
- It's the motion of parts that could either move partly or having to move all together.

Client & Sponsor

- Client
 - Dr. Sarah Oman
 - Mechanical engineering professor, NAU
- Sponsor By
 - Mechanical Engineering Department, NAU
- Project is important to show the Mechanical Engineering Principles and illustrate the Engineering Building and represent the ME department in a positive and marketable way.

Project Description

- The project involves designing the kinetic sculpture
- The design of the sculpture is in such a manner that the bird lies over a box.
- Principles used and finalized are gears, shaft, spring, and V-belt meeting the customer requirement of at least three mechanisms
- The wings will be used in the sculpture work to demonstrate the movement
- The gears, motors and shafts will be primarily used to facilitate the movement of the wings.

The Project Description

(Continued)

- The main purpose of the sculpture is to facilitate learning mechanical engineering concepts
- The sculpture will be used as an example of useful application of the mechanical engineering principles

Figure 2: Minimized Device of original

Updates

- There are many changes that have been made to the model
- One of the changes is with regards to the size of the materials
- The device will increase in weight, but still ensuring that it can be carried by two people
- The changes are made to help meet the specification of the customer.
- A new mechanism has been added.

Update (V-Belt)

- A new mechanism has been added and that is the V-belt
- This update has been added to help add an extra movement into our bird (tail)
- Analysis has been done to help know how much extra force would be needed.

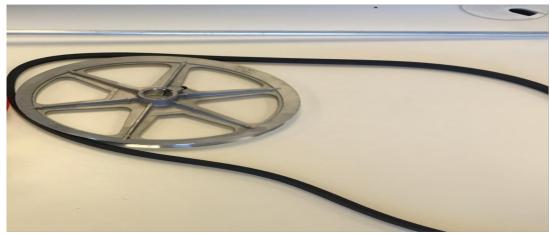
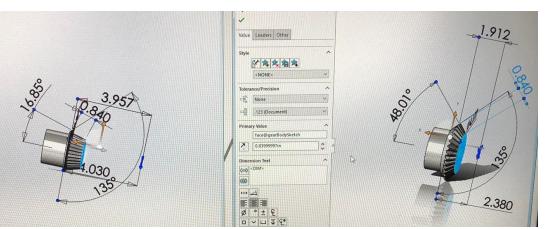



Figure 3: V-belt

Pitch Dia.

2.04" 1375" 275"

Pitch: 10 mm

Number of Teeth: 60

McMASTER-CARR. 40

Inguisma members com and com and company com and company c

Figure 6: A 6 inch drawing file of bevel Gear [5]

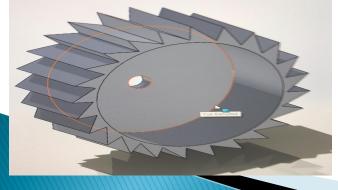


Figure 5: Mistakes

Problems & Updates

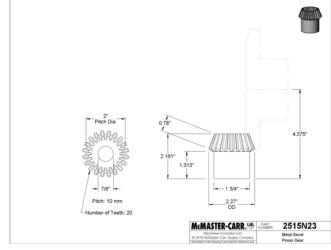


Figure 9: a 2 inch drawing of bevel gear [5]

Figure 8: Old initial idea

The Dimension of Changes

 A basic sketch on how it would look like would be located on the figure in the right.

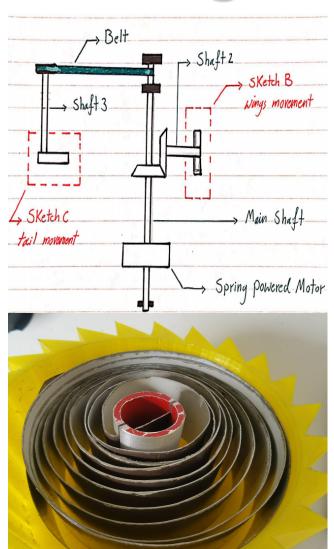
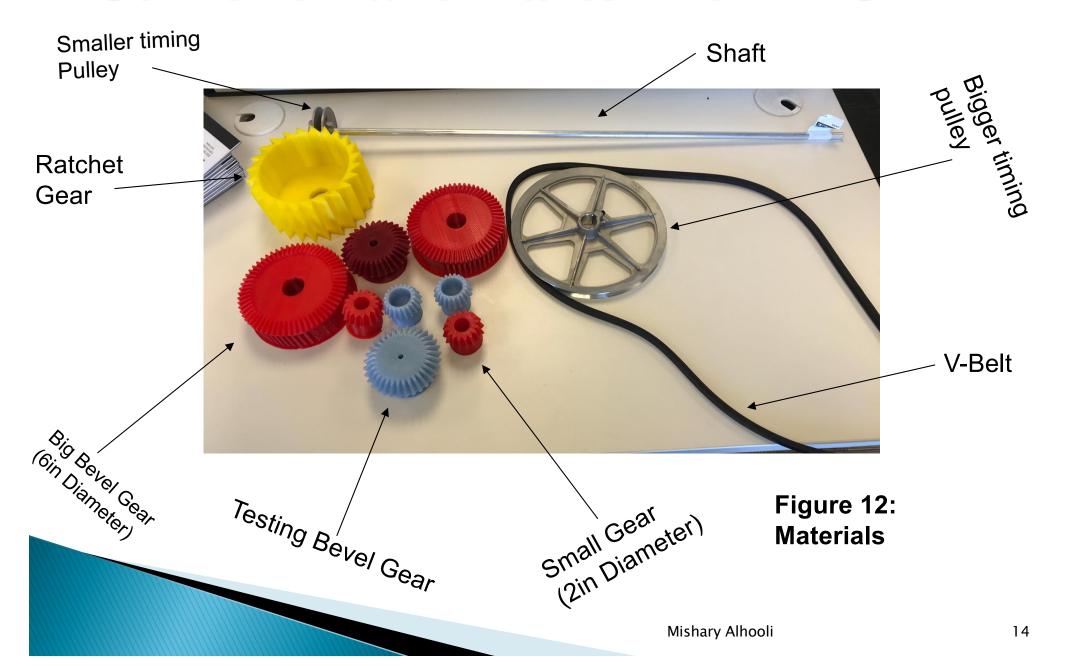


Figure 10: Sketch

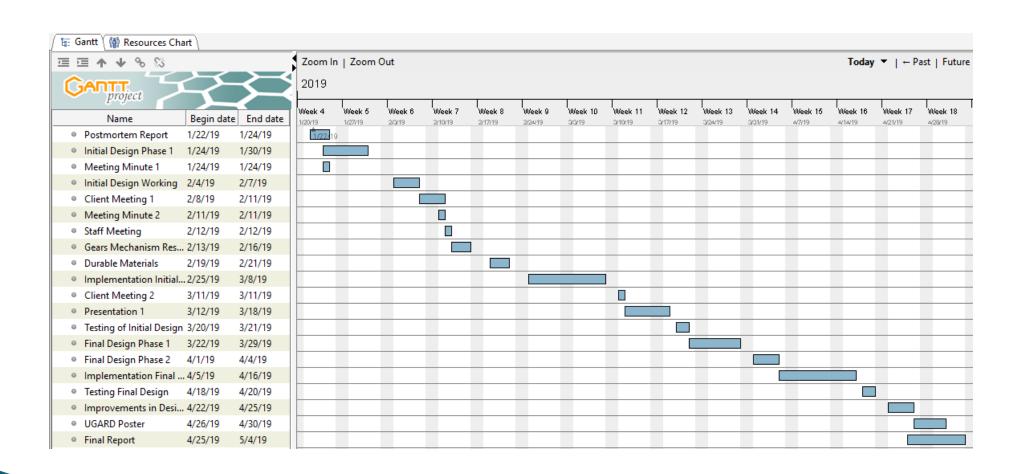
Figure 11: Spring and gear


Moving Forward

- The project is categorize the kinetic sculpture of the bird as an appropriate device.
- The manufacturing phase will consider ideal measures
- The specification of the customers is considered and integrated as we are currently manufacturing.
- The process of manufacturing left for our project is fixing the loosen spring by replacing it
- Testing requires updates once the spring is developed

BOM

Bill of Materials								
Team								
Part # Part Name	Qt	Description	Functions	Material	Dimensions	Cost	Link to Cost estimate	
1 Liquid Super Glue		1 Use to stick the material	Create strong bonding	Chemical	-	\$5.97	Homedepot	
2 Poplar Board		1 For the box	To put items in the box	Wood	0.25 x 3.5 x 48 i	\$5.98	Homedepot	
3 Black PVC Project	Board	1 PVC board is strong to bend	For making the upper part	PVC	0.118 x 24 x 36	i \$4.04	Homedepot	
4 Stop Set		1 to stop the running part	Put to stop the rotation	Aluminum	1/4 in	\$1.92	Homedepot	
5 Stop Set		1 to stop the running part	Stop the motion	Aluminum	1/16 in	\$1.24	Homedepot	
6 Strap Hinge		1 Provide open close option	To put on the door	Steel	2 in x 4 in	\$2.97	Homedepot	
7 Brazing Rods		1 For making connection	Hold the top system with the rod	Aluminum	36 x 4 x 4	\$4.21	Homedepot	
8 Flat Plate		1 A straight sheet to make anything	Make the fins	Aluminum	36 x 4 x 8	\$4.28	Homedepot	
9 Hinge		1 Hold for open close	To put the door with it	Steel	2 x 5 in	\$1.97	Homedepot	
10 Round Rod		1 A rod to attach things	Make the Central standing part	Steel	36 x 2 x 2	\$5.77	Homedepot	
11 Dowel		1 Cylinderical rod	Put in the system	Wood	1/4 x 48 in	\$4.98	Homedepot	
12 Dowel		1 Cylinderical rod	Put in the system	Wood	1/2 x 48 in	\$1.75	Homedepot	
13 Dowel		1 Cylinderical rod	Put in the system	Wood	1/8 x 48 in	\$4.48	Homedepot	
14 Round Rod		1 A rod to attach things	Make the Central standing part	Zinc	36 x 3 x 1/16 in	\$2.97	Homedepot	
15 Wood Glue		1 Sticky action	Create strong bonding	Chemical	-	\$3.97	Homedepot	
16 Shaft		1 An aluminum pipe	welded to be a shaft	Aluminum	D=1" , L=48"	\$27.49	Amazon	
17 Shaft		1 An aluminum pipe	welded to be a shaft	Aluminum	D=0.5", L=48"	\$19.99	Amazon	
18 Blower pulley		1 A pulley made from steel	Pulley to help turn the V-belt	Steel	10 x 1 "	\$13.78	Homedepot	
19 Motor Pulley		1 A pulley made from steel	Pulley to help turn the V-belt	Steel	3-1/4 x 1/2	\$9.88	Homedepot	
20 V-Belt		1 Made from rubber	Help transfer the energy or mechanism	rubber	69"	\$5.78	Homedepot	
21 Galv roll		1 A roll of steel	In order to create the spring inside the gear	Steel	8" x 10'	\$13.34	Homedepot	
22 F-150		1 Will be chopped down to meet needs	To help make the base	Wood	1" x 4' x 8'	\$23.00	Homedepot	
23 Melamine White P	annel	2 Helps fitting through cutting	Cut it down to create the base	wood	75" x 48"	\$33.84	Homedepot	
24 White PEX Pipe		1 Works as rods	They are going to help move the wings	Plastic	3/4" x 5'		Homedepot	
25 PEX Pipe		1 Works as rods	To connect to timing pulleys	iron	1/2" x 5'	\$1.86	Homedepot	
26 Aluminum Flashin	g	1 A roll of Aluminum	Help make a spring compared to the steel	Aluminum	6" x 25'		homedepot	
27 Center snips		1 Tool for pipes	Cuts down the pipes to required sizing	Steel	No	\$9.97	Homedepot	
28 3-D Gears		2 Source of mechanism	rotates energy	PLA	D=6" , L=2.25"		Makerlab	
29 3-D Gears		2 Source of mechanism	rotates energy	PLA	D=3.5" , L=2"	\$19.35	Makerlab	
30 3-D Gears		1 Source of mechanism	Ratchet Gear needed for spring	PLA	D=7", L=3.5	\$66.21	Makerlab	
31 3-D Gears		2 Source of mechanism	rotates energy	PLA	D=2", L=1.5"	\$9.38	Makerlab	
32 3-D Gears		2 Source of mechanism	rotates energy	PLA	D=6", L=2.5"	\$51.63	Makerlab	
						\$419.84		
	\$491.21 = Total Cost							


Current Valid Parts From BOM

Schedule and budget

- A schedule has been defined in the form of Gantt chart
- It describes and show the timeline from starting time till the ending time.
- The Gantt chart is a process of helping us track our achievements and what we have to accomplish within a time span provided based on due dates.

Gantt Chart

Budget

Budget Description	Price
Total Budget	\$1300
Anticipated Expenses	\$1000
Actual Expenses	\$535.38
Remaining Budget	\$764.62

Conclusion

Conclusion

- Team is working on the project manufacturing the Kinetic Sculpture
- Customer requirements so far has been fulfilled
- CR's and ER's have been checked throughout the building process
- Our final design is being manufactured
- Final design settled from previous semester have not changed but, extra calculations and items have been added
- Technical Analysis has been done by each member in depth to help the process
- Final CAD model is in process
- Bill of Materials has been updated
- Gantt chart has been updated
- Budget has been updated
- Behind schedule due to printing errors from the NAU maker lab and devices shut down

Future Work

- Manufacturing the other 60% of Project
- Hardware review II

References

- 1. Chau, C., 2017. Systems Aesthetics: A key polemic in contemporary kinetic art history. In *Movement, Time, Technology, and Art* (pp. 57-73). Springer, Singapore.
- 2. Chen, G.D., Lin, C.W. and Fan, H.W., 2015. The history and evolution of kinetic art. *International Journal of Social Science and Humanity*, 5(11), p.922.
- Li, B., Mooring, J., Blanchard, S., Johri, A., Leko, M. and Cameron, K.W., 2017. A kinetic parallel computer sculpture for educating broad audiences on parallel computation. *Journal of Parallel and Distributed Computing*, 105, pp.183-199.
- Wilson, E., 2018. 'Diagrams of motion': Stop-motion animation as a form of kinetic sculpture in the short films of Jan Švankmajer and the brothers quay. *Animation*, *13*(2), pp.148-161.
- Mcmaster.com. (2019). *McMaster-Carr*. [online] Available at: https://www.mcmaster.com/bevel-gears [Accessed 6 Mar. 2019].

Everyone 19

Questions?