Lerner Exoskeleton I

Team G:

- Mohammad Alajmi (Project Manager)
- Mahdi Alajmi (Client Contact)
 - Saud Almutairi (Web designer)
- Abdullah Alazemi (Document Manager1)
- Mohammad Alkhaldi (Document Manager2)
- Barjas Aldoosri (Budget Licenses)

Introduction

- Project Description.
- Background & Benchmarking.
- Customer Requirements & Weightings.
- Gantt Chart & Budget.

Project Description

- Robotic exoskeletons help neuromuscular disorder to walk.
- System provide assistance at the knee and ankle joints.
- The goal is to design adjustable system



Figure 1: Adjustable Human-Exoskeleton
Mounting Interface

Client

- Zach Lerner, Ph.D.
- Director of NAU's Biomechatronics Lab

- Goal:
 - Reduce the suffering.

Background & Benchmarking

- Berkeley Exoskeleton (Design 1):
 - Most Visible.
 - Focus on Lower Body.
- MIT Exoskeleton (Design 2) :
 - Release Energy.
 - Kinetics and Kinematics.

Figure 2: Berkeley Exoskeleton Figure 3: MIT Exoskeleton [1]

Background & Benchmarking

- Sarcos Exoskeleton (Design 3):
 - Full body exoskeleton
 - Rotary hydraulic actuators on the joints
 - Force sensing between robot and user
 - Feet remain stiff and not to bend

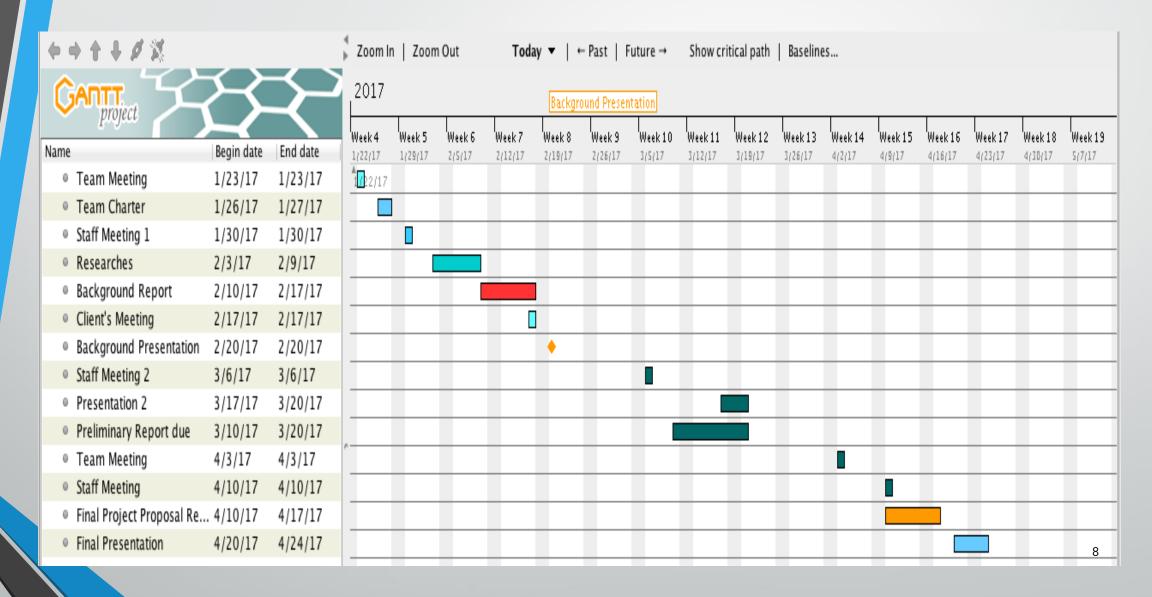


Figure4: Sarcos Exoskeleton [3]

Customer Requirements & Weightings

Customer Requirements	Weighted (x5)
Providing rigid mounting points to foot shank and the thigh	5
To allow the design to be adjusted to various sizes of limbs and accommodate individuals of between the ages of five and seventy-five	3
To make the design easy to doff/don	2
To minimize skin irritation by the physical interface	4
To allow the foot portion to be low profile as well as insert into normal shoes	4
Make the design lightweight and at the same time strong	5

Gantt Chart

Budget

- The budget is (\$500) funded by Dr.Zach Lerner.
- Materials (\$200).
- Painting (\$50).
- Prototyping(\$100).
- Remaining(\$150).

References

- [1] Public Affairs, UC Berkeley | February 3, 2016 March 30, 2016 and P. Affairs, "A new-generation exoskeleton helps the paralyzed to walk," Berkeley News, 30-Mar-2016. [Online]. Available: http://news.berkeley.edu/2016/02/03/a-new-generation-exoskeleton-helps-the-paralyzed-to-walk/. [Accessed: 19-Feb-2017]
- [2] "Exoskeletons for Walking Augmentation," Biomechatronics. [Online]. Available: http://biomech.media.mit.edu/portfolio_page/load-bearing-exoskeleton-for-walking/. [Accessed: 19-Feb-2017].
- [3] "Guardian XO," Sarcos. [Online]. Available: http://www.sarcos.com/?page_id=1369. [Accessed: 19-Feb-2017].

Questions?

Thanks for your attention.