

Go Baby Go-D Sponsor/Client: Dr. Sarah Oman

Presented by: Hussen Alajmy, Yousef Alenezi, Saleh Almasari, Yousef Alragem, Shahah Eshkanani

Project Overview

GBG Club Aim & Retrofits:

- Children with limit mobility
- Socialize & added mobility
- Based on electric toy cars
- Modified based on each child's situation
- Cost effective compared to other medical solutions
- **Project goal**: build a new version of GBG retrofit

Figure 1: GBG [1]

Client & Helpful Members

Sponsor:

• Dr. Sarah Oman

Mechanical Engineering

sarah.oman@nau.edu

• Michael Bair

Mechanical Engineering

mob27@nau.edu

Yousef Alenezi

Project Requirements

Customer requirements:

- 1. Power system: control acceleration
- 2. Physical: comfortable seat
- **3**. Operating system: easy to operate
- 4. Financial: Low final cost
- 5. Safety: seat belt & frame padding

Engineering requirements:

- 1. Weight \leq 140 lb.
- **2.** Price/Cost \leq \$550
- **3**. Battery life ≥ 2 hrs.
- 4. Multiple speeds (0-6 MPH)
- 5. Ordered parts \leq 7 days
- 6. Creative steering option
- 7. Soft edges
- 8. OSHA standards

Design Selected

Table 1: Decision Matrix

	Weight	CV 2		CV 4		CV 5	
Criteria		Raw	Weight	Raw	Weight	Raw	Weight
All cost must be under \$1500	0.1	80	8	85	8.5	40	4
Development risk	0.2	80	16	90	18	40	8
Technical difficulty	0.25	80	20	80	20	60	15
Schedule risk	0.15	90	13.5	100	15	75	11.25
Does it meet the customer requirements?	0.1	85	8.5	85	8.5	70	7
Does it have jerking motion?	0.05	100	5	100	5	80	4
ls it accurate?	0.1	70	7	75	7.5	30	3
ls it made of standard components?	0.05	85	4.25	85	4.25	100	5
Total	1		82.25		86.75		57.25
Relative Rank			2		1		3

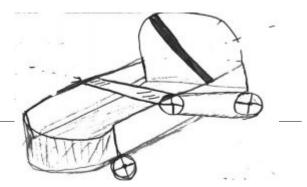
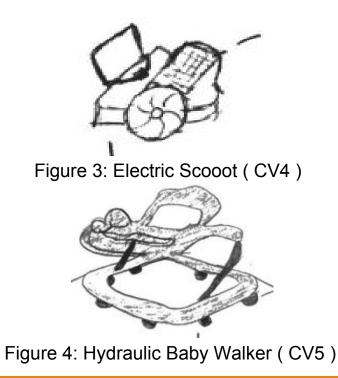



Figure 2: Hover Board Bed (CV2)

Shahah Eshkanani

Design Selected

Figure 5: Scooot [4]

Figure 6: Hover board [7]

Figure 7: Final design

Final Product

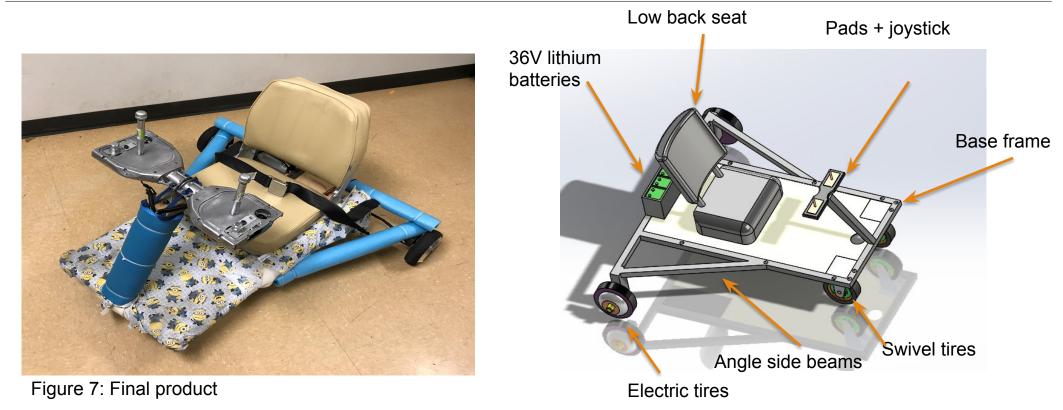
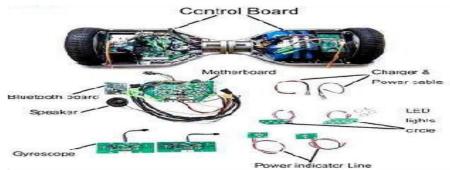


Figure 8: Final design CAD

Shahah Eshkanani


Manufacturing Process

Structural base:

- Plain Steel Frame
- Wooden Board

Subsystem:

- Low Back Seat
- Electric & Swivel Wheels
- Motherboard
- Pressure Pads (connected with joysticks)
- Batteries

Saleh Almasari

Final Product Testing

Table 2: Testing & Results

Testing	Struggles	Results		
Weight compatibility	Max. weight increased	✓ Device Holds up to 260 lbs		
Electrical circuits	 Motherboard electric shortage Batteries over the power required (high current) 	 Motherboard replaced Batteries replaced (36V Lithium Batteries) 		
Pressure pads	Less responsive pressure pads	 ✓ Pressure pads replaced ✓ Joy Stick style steering added 		
Heat generation	No struggles	 No heat generated from the battery except when charging 		
Balance check	No struggles	 Alignments of the device passed the test and the tires were parallel to each other 		

References:

[1]"Human Power", AENews, 2016. [Online]. Available: http://www.alternative-energy-news.info/technology/human-powered/. [Accessed: 26- Sep- 2016].

[2]2016. [Online]. Available: http://www1.udel.edu/V2G/docs/Kempton-Letendre-97.pdf. [Accessed: 26- Sep- 2016].

[3]"'Go Baby Go' mobility program for children with disabilities expands to OSU | News and Research Communications | Oregon State University", *Oregonstate.edu*, 2016. [Online]. Available: http://oregonstate.edu/ua/ncs/archives/2014/nov/%E2%80%98go-baby-go%E2%80%99-mobility-program-children-disabilities-expands-osu. [Accessed: 21- Sep- 2016].

[4]F. 3-in-1, "Scooot 3-in-1 Mobility Rider", *www.mobilitydirect.com*, 2016. [Online]. Available: http://www.mobilitydirect.com/Scooot-3-in-1-p/414t144-30002.htm. [Accessed: 21- Sep-2016].

[5]"Tricycoo Tricycle", Joovy Online Store, 2016. [Online]. Available: http://joovy.com/tricycoo-tricycle/. [Accessed: 21- Sep- 2016].

[6] "GBG-D", Cefns.nau.edu, 2017. [Online]. Available: https://www.cefns.nau.edu/capstone/projects/ME/2017/GoBabyGoD/. [Accessed: 02- Apr- 2017].

[7] Balbuena, P. B., & Wang, Y. (2004). Lithium-ion batteries. Solid–Electrolyte Interphase.

[8] Patel, J. (2016). Technology worldwide. XRDS: Crossroads, The ACM Magazine for Students, 22(4), 11-11.

[9] Scooterera.com, 2016. [Online]. Available: http:// www.scooterera.com/wp-content/uploads/Hoverboard-parts-diagram-buying-guide2.jpg.

Thank You – Q&A

Yousef Alragem