

Go Baby Go-D Sponsor/Client: Dr. Sarah Oman

Presented by: Hussen Alajmy, Saleh Almasari, Shahah Eshkanani, Yousef Alragem, Yousef Alenezi

Go baby Go

What is Go baby GO? Who is the sponsor? Why is it important?

Go Baby Go

- Aims in helping Disabled children.
- •Make children feel normal.
- •Help build a better prototype for the child in need.

Sponsor

•Sponsor:

Dr. Sarah Oman

Mechanical Engineering

sarah.oman@nau.edu

Why Go baby Go is important?

- •Children of special needs are a part of this community.
- •Kids with special needs need to feel normal.
- •Children need to explore what's around them.

Existing Design

- Most Idea and similarities
- Difficulties of design
- •High price
- Best selections systems
- 1. Scooot
- 2. Current GBG retrofit

3. Scooter

Scooot

- •3 different ways in using the device:
- 1. Crawling
- Helps the child in exploring new things.
- Strengthens the upper body muscles.
- 2. Scooting
- Sitting up straight.
- Move using legs.
- 3. Riding
- Add tires on each side.
- Acts like a wheel chair.

Figure 1: Scooot [4]

Current Go Baby Go Retrofit

- •Socialize & Transport Freely
- •Based on electric toy cars
- •Modified based on each client's situation
- •Cost effective compared to other medical solutions
- No acceleration control

Figure 2: Current GBG retrofit [3]

Scooter

•3 wheels

•Depends on human power to move

•Parents can control the child movement using the attached stick

•Won't meet the requirements of most disabled children

Figure 3: Scooter [5]

Subsystem Level

3 main subsystem levels for the existing design:

1. Human power: Arms and Legs

Figure 4: Scooot wheel [4]

Figure 5: Scooter pedal [5]

Subsystem Level

Electrical power:
 Battery and Electric
 motor

Figure 6: Batteries

Figure 7: Electric motor

9/26/2016

Subsystem Level

3.Main control system:

Steering and Pressure pads

Figure 8: Steering wheel

Figure 9: Pressure pads

SHAHAH ESHKANANI

Design requirements

- •Low cost (Budget \$1,500)
- •Obtainable parts
- •No jerking motion
- •New design

Customer Requirements & HoQ

1. Power system	Table 1: HoQ			
 a. Control acceleration 				
• b. cruise controller			emen	
• c. Breaks			aquin	
2. Physical			ng R(
a. comfortable seats			eeri	
 b. trunk mobility 		eigh	gin	
	Customer Requirement) ×	ا	
c. legs support	1. Power system			
	a. Control acceleration	5		
3. Operating system	b. cruise controller	3		
 a. easy to operate 	c. Breaks	5		
	2. Physical			
4 Financial	a. comfortable seats	5		
I manelal	b. trunk mobility	4		
5 Safaty	c. legs support	3		
J. Salety	3. Operating system			
 a. seatbelt harness 	a. easy to operate	5		
• h hars	3. Financial	5		
	4. Safety			
	a. seatbelt harness	5		
	b. bars	3		

Gantt Chart

		Name	Begin date	End date
		Team Meeting 1	9/7/16	9/7/16
	0	HW0	9/7/16	9/7/16
	0	Project Team Charter	9/7/16	9/12/16
	0	Staff Meeting 1	9/19/16	9/19/16
	0	Presentation 1: Customer ne	9/26/16	9/26/16
Ξ	0	Background Report + Peer e	9/19/16	9/30/16
		Introduction + Backgrou	.9/19/16	9/20/16
		Existing Design	9/20/16	9/21/16
		Customer requirements	9/21/16	9/23/16
		System	9/23/16	9/27/16
		Sub-System	9/27/16	9/29/16
		Editing	9/29/16	9/30/16
	Θ	Staff Meeting 2	10/17/16	10/17/16
	0	Presentation 2: Concept Gen	.10/24/16	10/24/16
	Θ	Preliminary Report and Peer	.10/28/16	10/28/16
	0	Staff Meeting 3	11/14/16	11/14/16
	0	Individual Analytical Analysi	11/18/16	11/18/16
	0	Presentation 3: Final	11/21/16	11/21/16
	0	Final Project Proposal Report	11/28/16	11/28/16
	0	Peer eval 3	12/2/16	12/2/16
	0	Staff Meeting 4	12/5/16	12/5/16
	0	Final Prototype	12/9/16	12/9/16

Figure 10: Gantt Chart

SALEH ALMASARI

References:

[1]"Human Power", *AENews*, 2016. [Online]. Available: http://www.alternative-energy-news.info/technology/human-powered/. [Accessed: 26- Sep- 2016].

[2]2016. [Online]. Available: http://www1.udel.edu/V2G/docs/Kempton-Letendre-97.pdf. [Accessed: 26- Sep- 2016].

[3]"'Go Baby Go' mobility program for children with disabilities expands to OSU | News and Research Communications | Oregon State University", *Oregonstate.edu*, 2016. [Online]. Available: http://oregonstate.edu/ua/ncs/archives/2014/nov/%E2%80%98go-baby-go%E2%80%99-mobility-program-children-disabilities-expands-osu. [Accessed: 21- Sep- 2016].

[4]F. 3-in-1, "Scooot 3-in-1 Mobility Rider", *www.mobilitydirect.com*, 2016. [Online]. Available: http://www.mobilitydirect.com/Scooot-3-in-1-p/414t144-30002.htm. [Accessed: 21- Sep- 2016].

[5]"Tricycoo Tricycle", Joovy Online Store, 2016. [Online]. Available: http://joovy.com/tricycoo-tricycle/. [Accessed: 21- Sep- 2016].

Thank You

YOUSEF ALENEZI