

Steering Wheel Not Included

Abdullah Alajmi, Abdulrahman Almutairi, Ernes Distajo, Mohammad Aljuaidi, Samuel Williams

Department of Mechanical Engineering, Northern Arizona University

Abstract

Children with limited mobility often do not receive much exposure to socialization that is necessary for cognitive development, so Go Baby Go foundation was created in 2012 at the University of Delaware in order to help those children. It started with developing a set of Do-It-Yourself (DIY) cars for families with children with mobility restrictions. These cars have shown to be a cost-effective means of enabling young children to move and interact with their peers. The goal of this project will be to design and build a new version of the GBG retrofits specifically to design a universal control for children that extremely limited mobility of their arms and/or legs. The team sought to come up with a product that: is not restrictive, that provides sufficient securement and support options, and that puts safety first above everything else.

Customer Requirements

The following customer requirements are generated based on the client's request. They are rated 0-5; 5 having the most importance and 0 having the least importance.

Customer	Weightings	Percentage
Requirements		
Cost	4	11.59%
Safety	5	14.49%
Quality	4.5	13.04%
Transportable	3.5	10.14%
Unique Solution	4	11.59%
Longlife Time	3	8.70%
Material accessibility	4	11.59%
Easy to assemble	3.5	10.14%
Control System	3	8.70%
Total:	34.5	100.00%

Table 1: Customer Requirement

Engineering Requirements

Engineering requirements for this project were constructed based on the customer requirements. The following engineering requirements were approved by the project's client.

Engineering Requirements	Target	Tolerance
Material Cost	\$350	< \$400
# of Securements	2	≥ 1
# of Supports	2	≥ 1
Weight of Car	60 lbs.	< 100 lbs.
Material Access	Local Stores	Shipping < 3 weeks
Assembly Time	2.5 hrs.	< 4 hrs.
Significant Material Lifetime	3 years	≥ 2 years
Adaptability	4 adaptable features	≥ 3 adaptable features
Adjustable Speed	Starting speed of 1 mph	< 2 mph
Unique Solution	Unique from past GBG solutions	Unique

Table 2: Engineering Requirement

Project Goal

The goal of this project was to create a unique GoBabyGo car that is adaptable to various children regardless of their circumstance, achieved with the following components, and that is replicable, allowing any parent to follow this process to make their own kid's personal car.

- 1. Steering Buttons
- 2. Armrests
- 3. Headboard

- 4. 5-point Harness
- 5. Go Button

Figure 1: Final Design

Cost Analysis

The cost for the car is shown in the table below.

Part Name	Cost [USD]
Power Wheels Car	159.99
Push Button x 3	50.85
Ultimate Starter Kit	48.99
Primary Wire x 3	15.57
Arduino Motor Shield	24.97
Kickboard	5
Male and Female Disconn	5.98
Development Board	7.86
PVC Pipes x 2	3.28
PVC Elbow x 2	1.96
Total	\$324.45

Table 3: Bill of Materials

Proposed Design

Figure 2: Final Design CAD Assembly View

References

NAU, "NAU welcomes GoBabyGo mobility program for children with disabilities," 2015. http://news.nau.edu/nau-welcomes-gobabygo-mobility-program-for-children-with-disabilities/. [Online]. Accessed: Sep. 15, 2016

Northern Arizona University, "GoBabyGo Project Descriptions: ME 476C," Flagstaff, AZ, 2016.

"Power Wheels®: Disney•Pixar cars 2 Lil' lightning McQueen - shop power wheels ride on cars & trucks," in Fisher-Price. [Online]

Matthew W. Brault, "School-Aged Children With Disabilities in U.S. Metropolitan Statistical Areas: 2010," in www.census.gov , 2011. [Online]. Accessed: Sep. 25, 2016

DIY Remote Control Car: The Best Tutorial to build an RC Car!," DIY Hacking, 2016. [Online]. Available: https://diyhacking.com/remote-control-car/. [Accessed: 23-Nov-2016].

T. Harris, "How Joysticks work," in Tech, HowStuffWorks, 2002. [Online]. Available: http://electronics.howstuffworks.com/joystick.htm. Accessed: Sep. 28, 2016.

Acknowledgement / Sponsor

Dr. Sarah Oman (Professor)

Northern Arizona University Department of Mechanical Engineering

