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Introduction:  

The purpose of this memo is to prove that it is feasible to maintain a physiologically relevant 

fluid temperature throughout an in vitro vascular model. 

 

Problem: 

Our in vitro model’s purpose is to imitate a biological vascular system so that experiments can be 

performed and refined before being performed in a living subject. In order for the model to be effective in 

its purpose, it must be as physiologically relevant as possible. 

 There are many important variables to consider when creating a physiologically relevant model, 

but one of the most vital variables our team must consider is the temperature of the fluid in our model. 

Many fluids behave differently with changes in temperature. In order to ensure that our model is relevant, 

we need to prove that fluids throughout our entire model are within a physiologically relevant range. 

 

Approach:  

 Since we do not have a working model to test, the temperature drop of the fluid in our model 

must be estimated mathematically. Heat loss can be estimated by creating a thermal resistance network 

(Figure 1) to model the system and using it to calculate total thermal resistance. 

 

 

 
 

 

The thermal resistance due to conduction through the vessel can be found using Equation 1, 

where k is the conduction coefficient of the model material, L is the length of the vasculature, r2 is the 

outer radius of the vasculature, and r1 is the inner radius of the vasculature. 

 

Rcond = (ln
r2

r1
 ) (2πkL)⁄     (1) 

 

The thermal resistance due to free convection from the vessel to the ambient air can be found 

using Equation 2, where h is the convection coefficient of air, L is the length of the vasculature, and r2 is 

the outer radius of the vasculature. 
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Rconv = 1 (2hπr2L)⁄     (2) 

 

Since the thermal resistors are in series, they can be summed to find the total equivalent thermal 

resistance of the system. Using the parameters defined in Table 1, it is possible to calculate the total 

equivalent thermal resistance of the system. 

 

Table 1: Parameters for Equation 1 

Parameter Value 

kglass 1.05 
W

m∙K
 

hair 10 
W

𝑚2∙K
 

L 0.127 m 

r2 2.01 mm 

r1 1.50 mm 

T1 37 °C 

T∞ 25 °C 

 

Req= 65.84 K/W 

 

 Once the total resistance has been found, this value along with the temperatures from Table 1 can 

be used to find heat loss in Equation 3. 

  

q = (T1 − T∞) Req⁄     (3) 

q= 182.3 mW 

 

 Once we have a value for heat loss, we can use this to find the temperature drop of the fluid in the 

model using Equation 2, where cp is the specific heat of the fluid, V is volume of the fluid, and ρ is 

density of the fluid. These parameters are quantified in Table 2. 

 

q = cp ∙ V ∙ ρ ∙ (T1 − T2)     (4) 

 

Table 2: Parameters for Equation 2 

Parameter Value 

cp 2.43 
kJ

kg∙K
 

ρ ρ= 1.26 
g

cm3 

V 8.98 x 10-7 m3 

T1 37 °C 

 

T2= 36.94 °C 

 

This equation shows that there is very little temperature drop in the fluid as it flows through the 

system. 

 



Conclusion: 

 The result of this estimation is very promising. Since there is minimal temperature drop in the 

fluid as it flows through the model, insulation of the model is likely unnecessary. This allows the model 

design to be simplified and allows for better visualization of flows within the model. 

 Since the model has not been developed, assumptions had to be made for several factors. Glass 

was chosen as the vessel material as a conservative estimate because glass conducts heat better than the 

polymers being considered. Glycerin was chosen as the fluid for the model because it has a lower specific 

heat than water so it doesn’t take as much heat to change its temperature. Due to these assumptions, this is 

a conservative estimate, so the measured temperature drop in the system will likely be smaller than 

calculated. 

This estimation can be easily proved empirically when the model is created by measuring the 

temperature as it flows both in and out of the model. 


