SAE Baja

Proposal

Fahad Alajmi, Sean Collins, Peng Li, Auston Solway, Maximillian Whipple, Jingyuan Zhang

Srinivas Kosaraju Dec. 9, 2015

Introduction

- Review of the Client's needs, requirements, goals, and constraints
- Review of the Gantt chart, Quality Function Deployment, and House of Quality
- Functional Diagram of the Baja: how the baja works and its main sources of energy used
- Decision criteria and outcomes for the shifter, suspension, and clutch
- Design problems encountered since the last deliverable
- New designs, design solutions, and components to design
- Bill of Materials for each design component so far

Client's Needs and Team Goals

Clients: NAU's SAE club and Dr. Tester

<u>Need Statement:</u> The NAU SAE club does not have a Baja vehicle for competition

Goals:

- Build an operational Baja vehicle
- Inspire teamwork related to engineering design and practices
- Participate in competition

Project Objectives

Objectives	Measurement
Light Weight	lb
High Traction	lb
Quick Acceleration	ft/s ²
Safe	No Units
Endurance	hr
Ergonomic Cockpit	ft

Project Constraints

- Fully operational by March 1st, 2016
- Must have at minimum 2 forward gears and 1 reverse gear
- Cannot exceed 108" in length or 64" in width
- Weigh between 400 and 800 pounds
- Must use a 10 horse power Briggs and Stratton engine
- Utilize previous year's transmission design

Quality Function Deployment

	S				ş			gth					Legend						
Engineering Requirements	uluboM s'gr	eight	ssion	ions	cknes	Safety	Cost	e Len	ower	iffness	ity	n Stee e	Strong Relationship	9					
		ng's M	ng's M	ng's N	ng's N	ng's N	ng's N	ody W	ansmi	imens	ne Thi	ctor of	Total (ust Pip	Igine F	'ing St	ing Sti Veloc	ximum Angl	Moderate Relationship
	no	ā			-rar	Fac	Fa(Ш	Spi	Spr	Ma	Weak	1					
Customer Requirements								Ш					Relationship						
Follow the 2016 SAE Baja																			
Rules		9	9	9				9	9										
Safety	9				9	9						9							
Inexpensive	9	9		9	9		9			9									
Aesthetic				3	3			1											
Maneuverability	9	9	9	1	1				9	9	9	9							
Ergonomic Cockpit				3															
Traction		9	9	9					9			9							
Robust	9			3	9		3			9	9	9							
Endurance	9	9			9	9	1			3		9							

House of Quality

Young's Modulus												
Body Weight												
Transmission		-			Posi	tive Correl	ation	+]			
Dimensions		+			Nega	tive Corre	lation	-				
Frame Thickness	-	+		+		_			·			
Factor of Safety	+	+			+				Maximi	ze		<u>↑</u> ↑
Total Cost	+	+		+				_	Target			٥
Exhaust Pipe Length				+					Minimiz	e		Ļ
Engine Power							+					
Spring Stiffness						+	+				_	
Velocity												_
Maximum Steer Angle		-	+						+			
Engineering Requirements	Young' s Modul us	Body Weight	Trans missio n	Dimen sions	Frame Thickn ess	Factor of Safety	Total Cost	Exhau st Pipe Length	Engine Power	Spring Stiffne ss	Velocit y	Maxim um Steer Angle
Column#	1	2	3	4	5	6	7	8	9	10	11	12
Direction of improvements	$\uparrow\uparrow\uparrow$	٥	$\uparrow\uparrow\uparrow$	٥	٥	↑↑↑	Ļ	٥	0	ttt	111	$\uparrow\uparrow\uparrow$

Functional Diagram

Frame: Modification 1

Frame: FEA for Front Impact

Test Result: Pass

Minimum Factor of safety: 3.04

Frame: FEA for Side Impact

Test Result: Pass

Minimum Factor of safety: 2.22

Frame: FEA for Rear Impact

Minimum Factor of safety: 1.95

Frame: FEA for Roll Over Impact

Test Result: Failure

Minimum Factor of safety: 0.774

Frame: Modification 2

Frame: FEA for Front Impact (Final Design)

Test Result: Pass

Minimum Factor of safety: 2.84

Frame: FEA for Side Impact (Final Design)

Test Result: Pass

Minimum Factor of safety: 2.35

Frame: FEA for Rear Impact (Final Design)

Test Result: Pass

> Minimum Factor of safety: 1.99

Frame: FEA for Roll Over Impact (Final Design)

Test Result: Pass

Minimum Factor of safety: 2.62

Suspension: Criteria Rating

Rear Suspension								
Level	Rating	Travel (in)	Deflection (in)	Durability (hours)	Cost	Maint./Repair (min)		
Perfect	10	20	0	30	≤ \$150	≤ 15		
Excellent	9	18	0.25	27	\$300	30		
Very Good	8	16	0.5	24	\$450	45		
Good	7	14	0.75	21	\$600	60		
Satisfactory	6	12	1	18	\$750	75		
Adequate	5	10	1.25	15	\$900	90		
Tolerable	4	8	1.5	12	\$1,050	105		
Poor	3	6	1.75	9	\$1,200	120		
Very Poor	2	4	2	6	\$1,350	135		
Inadequate	1	2	2.25	3	\$1,500	150		
Useless	0	0	≥ 2.5	0	> \$1500	> 150		

Suspension: Criteria Weight and Decision Outcomes

Criteria Weight					
Criteria Normalized Weight					
Travel	0.14				
Deflection	0.13				
Durability	0.37				
Cost	0.12				
Maint./Repair	0.24				
Total	1.00				

Criteria	Three Link	Single Trailing Arm	A-Arm
Travel	10(0.14)	10(0.14)	6(0.14)
Deflection	8(0.13)	0(0.13)	8(0.13)
Durability	7(0.37)	3(0.37)	7(0.37)
Cost	6(0.12)	10(0.12)	7(0.12)
Maint./Repair	6(0.24)	8(0.24)	5(0.24)

Criteria	Three Link	Single Trailing Arm	A-Arm
Travel	1.4	1.4	0.84
Deflection	1.04	0	1.04
Durability	2.59	1.11	2.59
Cost	0.72	1.2	0.84
Maint./Repair	1.44	1.92	1.2
Total	7.19	5.63	6.51

Suspension: Design Changes

Current Design: Single Trailing Arm

Desired Outcome: Three Link Representation

Suspension: Concept Implementation and Cost

CAD Comparative Representation

Initial Implementation/Mock-Up

Front View of Mock-Up

Transmission: Clutch Criteria Rating

	Clutch							
Level	Rating	Durability	Maint./Repair	Torque (ft-lb)	Cost			
Perfect	10	100 hrs.	≤ 15 min.	≥ 30	≤ \$150			
Excellent	9	90 hrs.	30 min.	28.5	\$300			
Very Good	8	80 hrs.	45 min.	27	\$450			
Good	7	70 hrs.	60 min.	25.5	\$600			
Satisfactory	6	60 hrs.	75 min.	24	\$750			
Adequate	5	50 hrs.	90 min.	22.5	\$900			
Tolerable	4	40 hrs.	105 min.	21	\$1,050			
Poor	3	30 hrs.	120 min.	19.5	\$1,200			
Very Poor	2	20 hrs.	135 min.	18	\$1,350			
Inadequate	1	10 hrs.	150 min.	16.5	\$1,500			
Useless	0	0 hrs.	> 150 min.	≤ 15	> \$1500			

Transmission: Clutch Criteria Weight and Decision Outcomes

Criteria Weight					
Criteria	Normalized Weight				
Durability	0.30				
Maint./Repair	0.12				
Torque	0.21				
User Friendly	0.13				
Cost	0.24				
Total	1.00				

Criteria	Centrifugal	Basket Clutch
Durability	7(0.30)	10(0.30)
Maint./Repair	10(0.12)	2(0.12)
Torque	10(0.21)	10(0.21)
User Friendly	10(0.13)	5(0.13)
Cost	9(0.24)	3(0.24)

Criteria	Centrifugal	Basket Clutch
Durability	2.1	3
Maintenance/Repair	1.2	0.24
Torque	2.1	2.1
User Friendly	1.3	0.65
Cost	2.16	0.72
Total	8.86	6.71

Transmission: Shifting Fork Design

- Previous shifting forks were incompatible
- New design is made from one solid piece
- One steel part and Two 3D printed parts have been fabricated
- Fadec code for the shift fork will be developed over break

Manual Milled Shift Fork

Transmission: Shift Rod Design and Transmission Cost Analysis

- Grooves and corners on the shift rod need to be widened
- 3D printed rod exists and will be used as test model
- Modification will allow for analysis of shifting force

Shifting Mechanism: Criteria Rating

Shifter								
Level	Rating	Deg. of Throw	Shifting Speed (s)	Shifting Force (Ib)	Cost			
Perfect	10	<10	1	<4	≤ \$100			
Excellent	9	10	2	4	\$125			
Very Good	8	20	3	6	\$150			
Good	7	30	4	8	\$175			
Satisfactory	6	40	5	10	\$200			
Adequate	5	50	6	12	\$225			
Tolerable	4	60	7	14	\$250			
Poor	3	70	8	16	\$275			
Very Poor	2	80	9	18	\$300			
Inadequate	1	90	10	20	\$325			
Useless	0	>90	> 10	>20	>\$325			

Shifting Mechanism: Criteria Weight and Decision Outcomes

Shifter								
Criteria	Normalized Weight							
Degrees of Throw	0.18							
Shifting Speed	0.13							
Shifting Force	0.45							
Cost	0.15							
Simplicity	0.09							
Total	1.00							

Criteria	Ratchet	Gate
Degrees of Throw	4(0.18)	8.5(0.18)
Shifting Speed	5(0.13)	5(0.13)
Shifting Force	7(0.45)	4(0.45)
Cost	3(0.15)	10(0.15)
Simplicity	4(0.09)	8(0.09)

Criteria	Ratchet	Gate
Degrees of Throw	0.72	1.53
Shifting Speed	0.78	0.65
Shifting Force	3.15	1.8
Cost	0.45	1.5
Simplicity	0.36	0.72
Total	5.46	6.2

• Due to design compatibility issues, the ratchet shifter has been selected as the shifting mechanism

Shifting Mechanism: Design Progress

Mechanism Mated to Transmission

SolidWorks Model

Shifter Design:

Down Shift Position

Resting Position

Up Shift Positon

- Shifting mechanism mounted to the frame and transmission
- Shifter mounted to bottom of frame next to seat position

- Shifting slide has been machined
- Shifting plate has been machined

Designs in Progress

- Muffler location is our problem, Baja 2016 rules not allow to muffler comes out of frame from three directions of frame(right, back, left).
- Should be a muffler extension be in the straight direction or down, not in any other direction.
- Solving of our muffler problem, to make the muffler in 90 degree horizontal line, instead what we have now(55 degree).
- Dr.Tester request to re design throttle.
- Per SAE rules, a fuel catchment system must be designed that fits within the vehicles envelope.

Bill of Materials

Part Name	Sub-part/Material	Cost				
Frame	AISI 4130 steel	\$121.16				
Suspension	Razor Half Shafts	\$539.98				
Transmission	Centrifugal Clutch	\$500				
	1018 Steel Forks	\$80				
Shifting	Linkage	\$60				
	Bearing/metal	\$45				
Muffler	Steel Pipe	\$7				
Gas Pedal	\$15					
Gas	\$15					
Total	\$1383.14					

Updated Project Plan

Task																									
	1	2 3	4	5	6	7	8	9 1	0 11	L 12	2 13	3 14	15	16	17	18	19	20	21	22	23	24	25	26	27
Communicate With Client		/ /	\bigvee	\bigvee	//	/	\wedge		\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Project Definitions		/ /	\mathcal{V}	\bigvee	\nearrow	\wedge	\wedge	\sim	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Preparing Quality Function Deployment:		/ /	\mathcal{V}	\bigvee	\nearrow	\wedge	\wedge	\wedge	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}	1												
State Of the Art Research		/ /	\mathcal{V}	\bigvee	\nearrow	\wedge	\wedge	\wedge	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}	1												
Verify The Date of Frame	\mathbb{N}	\wedge			\square	\wedge			\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Creating Function Diagrame:	\mathcal{N}	\wedge	/		\square	\wedge	\wedge	\wedge	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Conceptualizing Alternative Approach:	\mathcal{N}	\wedge	∇		\square	\wedge	\wedge	$\overline{\mathcal{N}}$	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}	1												
Register with SAE	\square	$\overline{\mathcal{N}}$	∇	\bigtriangledown		$\overline{\lambda}$	$\overline{\lambda}$	$\overline{\mathcal{N}}$	∇	∇	∇	∇													
Engineering Analysis for Current Baja	\square	$\overline{\mathcal{N}}$	∇	\checkmark					\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Decision Matrices	\mathcal{N}	$\overline{\mathcal{N}}$	∇	\bigvee			$\overline{\mathcal{N}}$	$\overline{\mathcal{N}}$	\mathcal{V}	\mathcal{V}	\mathcal{V}	∇	1												
Brainstorming for the transmission	\mathcal{N}	$\overline{\mathcal{N}}$	∇	\bigvee			$\overline{\mathcal{N}}$	$\overline{\mathcal{N}}$	\mathcal{V}	∇	\mathcal{V}	∇	1												
Concept Selection:	\square	$\overline{\nabla}$	∇	\square	\nearrow			$\overline{\mathcal{N}}$	∇	∇	∇	∇													
Budget Analysis	\mathcal{N}	$\overline{\mathcal{N}}$	∇	\bigvee	\nearrow	/ /	/ /		\mathcal{V}	∇	\mathcal{V}	∇	1												
Engineering Analysis for Improved Baja	\square	$\overline{\nabla}$	∇	\square	\square		77		∇	∇	∇	∇													
Fabrcating Concept Protopyte:	\square		∇	\square			/ /	//		∇	∇	∇													
Order The Engine and Other Necessary Materials	\mathbb{N}	$\overline{\mathcal{N}}$	∇	\bigvee	\searrow					\mathcal{V}	\mathcal{V}	\mathcal{V}	1												
Testing Concept Protopyte:	\mathcal{N}	$\overline{\mathcal{N}}$	∇	\checkmark	\nearrow	へ			/	/		\mathcal{V}	1												
Developing Propoal Designs	\mathcal{N}	$\overline{\mathcal{N}}$	∇	\checkmark	\nearrow	$\overline{\lambda}$		$\overline{\mathcal{V}}$	$\overline{\mathcal{V}}$	/	/														
Individual Design Work	\square		∇	\square	$\overline{}$		7		∇	∇	∇	∇						-							
Design Throttle and Fuel Catchment	\square	$\overline{\nabla}$	∇	\square	\nearrow	へ	フレ		∇	∇	∇	∇													
Build Main Baja Components	\square	77	∇	\square	\square	イ	7	イレ		∇	∇	∇	1									•			
Build Minor Baja Components	\square	$\overline{\nabla}$	∇	\square	\square	7	$\overline{\lambda}$		∇	∇	∇	∇	1												•
Problem Definition and Project Planing	\mathbb{N}		1	\bigvee	\nearrow	\wedge		\wedge	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}													
Concept Generation and Selection	\square	\sim	\mathcal{V}	\searrow	\nearrow	\checkmark	€ /∕	\sim	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}	1												
Concept Protopyte		$\overline{\mathcal{N}}$	∇	\square	\checkmark	\wedge	$\overline{\mathcal{N}}$	$\overline{\nabla}$	∇	1	\overline{V}	∇	1												
Project Proposal		$\overline{\nabla}$	∇	\square	\square		イレ		∇	\mathcal{V}	∇	∇	•												
End Break Continue Construction		$\overline{\nabla}$	∇	\square	\checkmark	イ	オレ	$\overline{\nabla}$	∇	∇	∇	∇	1						•						
Test Baja Final Construction		7	∇	\square	\square	オ	オレ	イレ	∇	∇	∇	∇	1												•

Conclusion

- Review of the Client's needs, requirements, goals, and constraints
- Review of the Gantt chart, Quality Function Deployment, and House of Quality
- Functional Diagram of the Baja: how the baja works and its main sources of energy used
- Decision criteria and outcomes for the shifter, suspension, and clutch
- Design problems encountered since the last deliverable
- New designs, design solutions, and components to design
- Bill of Materials for each design component so far

Questions?