Baja

Concept Generation and Selection

Fahad Alajmi, Sean Collins, Peng Li, Auston Solway, Maximillian Whipple, Jingyuan Zhang

Srinivas Kosaraju Oct. 21,2015

Introduction

- Dr.Kosaraju requested the development of the rear suspension, clutch mechanism, and transmission by 15 NOV.
- The vehicle must comply with SAE Baja 2016 rules and must be fully operational by March 1st, 2016.
- The Quality Function Development identified multiple engineering and customer requirements.

Functional Diagram

Criteria

Rear Suspension

- 1. Travel
- 2. Deflection
- 3. Durability
- 4. Cost
- 5. Maintenance/Repair

<u>Clutch</u>

- 1. Durability
- 2. Maintenance/Repair
- 3. Starting Torque
- 4. User Friendly
- 5. Cost

<u>Shifter</u>

- 1. Degrees of Throw
- 2. Shifting Speed
- 3. Shifting Force
- 4. Cost
- 5. Simplicity

Relative Weights of Criteria

Suspension										
Criteria	Average Normalized Weight									
Travel	0.14									
Deflection	0.13									
Durability	0.37									
Cost	0.12									
Maintenance and Repair	0.24									
Total	1.00									

Clutch									
Criteria	Average Normalized Weight								
Durability	0.30								
Maintenance and Repair	0.12								
Starting Torque	0.21								
User Friendly	0.13								
Cost	0.24								
Total	1.00								

Shifter									
Criteria	Average Normalized Weight								
Degrees of Throw	0.18								
Shifting Speed	0.13								
Shifting Force	0.45								
Cost	0.15								
Simplicity	0.09								
Total	1.00								

Concept Generation: Suspension

Three Link:

Concept Generation: Suspension

Single Trailing Arm:

Concept Generation: Suspension

Independent Rear Suspension (A-Arm):

Decision Matrix: Suspension

Ratings for Suspension Criteria:

	Rear Suspension												
Performance Level	Rating	Travel (in)	Deflection (in)	Durability (hours)	Cost	Mainten an ce/Repair (min							
Perfect	10	20	0	30	≤ \$150	≤ 15							
Excellent	9	18	0.25	27	\$300	30							
Very Good	8	16	0.5	24	\$450	45							
Good	7	14	0.75	21	\$600	60							
Satisfactory	6	12	1	18	\$750	75							
Adequate	5	10	1.25	15	\$900	90							
Tolerable	4	8	1.5	12	\$1,050	105							
Poor	3	6	1.75	9	\$1,200	120							
Very Poor	2	4	2	6	\$1,350	135							
Inadequate	1	2	2.25	3	\$1,500	150							
Useless	0	0	≥2.5	0	>\$1500	> 150							

Decision Matrix: Suspension

• Ranking Suspension Options:

Criteria Ranking									
Criteria	Three Link	Single Trailing Arm	A-Arm						
Travel	10	10	6						
Deflection	8	0	8						
Durability	7	3	7						
Cost	6	10	7						
Maintenance/Repair	6	8	5						
Total	37	31	33						

• Normalized Matrix:

Criteria Normalization										
Criteria	Three Link	Single Trailing Arm	A-Arm							
Travel	1.4	1.4	0.84							
Deflection	1.04	0	1.04							
Durability	2.59	1.11	2.59							
Cost	0.72	1.2	0.84							
Maintenance/Repair	1.44	1.92	1.2							
Total	7.19	5.63	6.51							

Concept Generation: Clutch

• Basket Clutch:

• Centrifugal Clutch:

Carbibles.com

Heeters.com

Decision Matrix: Clutch

Ratings for Clutch Criteria:

S	Clutch											
Performance Level	Rating	Durability	Maintenance/Repair	Starting Torque (ft-lb)	Cost							
Perfect	10	100 hrs.	≤ 15 min.	≥ 30	≤ \$150							
Excellent	9	90 hrs.	30 min.	28.5	\$300							
Very Good	8	80 hrs.	45 min.	27	\$450							
Good	7	70 hrs.	60 min.	25.5	\$600							
Satisfactory	6	60 hrs.	75 min.	24	\$750							
Adequate	5	50 hrs.	90 min.	22.5	\$900							
Tolerable	4	40 hrs.	105 min.	21	\$1,050							
Poor	3	30 hrs.	120 min.	19.5	\$1,200							
Very Poor	2	20 hrs.	135 min.	18	\$1,350							
Inadequate	1	10 hrs.	150 min.	16.5	\$1,500							
Useless	0	0 hrs.	> 150 min.	≤ 15	> \$1500							

Decision Matrix: Clutch

• Ranking Clutch Options:

Criteria Ranking Criteria Centrifugal Basket Clutch Durability 7 10 Maintenance/Repair 10 2 Torque 10 10 User Friendly 10 5 Cost 9 3 Total 46 30

• Normalized Matrix:

Criteria Normalization								
Criteria	Centrifugal	Basket Clutch						
Durability	2.1	3						
Maintenance/Repair	1.2	0.24						
Torque	2.1	2.1						
User Friendly	1.3	0.65						
Cost	2.16	0.72						
Total	8.86	6.71						

Concept Generation: Shifter

• Rachet Shifter:

• Gate Shifter:

Bmracing.com

Racereadyproducts.com

Decision Matrix: Shifter

Ratings for Shifter Criteria:

8	Shifter										
Performance Level	Rating	Degrees of Throw	Shifting Speed (s)	Shifting Force (lb)	Cost						
Perfect	10	<10	1	<4	≤\$100						
Excellent	9	10	2	4	\$125						
Very Good	8	20	3	6	\$150						
Good	7	30	4	8	\$175						
Satisfactory	6	40	5	10	\$200						
Adequate	5	50	6	12	\$225						
Tolerable	4	60	7	14	\$250						
Poor	3	70	8	16	\$275						
Very Poor	2	80	9	18	\$300						
Inadequate	1	90	10	20	\$325						
Useless	0	>90	> 10	>20	>\$325						

Decision Matrix: Shifter

• Ranking Shifter Options:

• Normalized Matrix:

Criteria Ranking									
Criteria	Rachet	Gate							
Degrees of Throw	4	8.5							
Shifting Speed	5	5							
Shifting Force	7	4							
Cost	3	10							
Simplicity	4	8							
Total	23	35.5							

Criteria Normalization									
Criteria	Rachet	Gate							
Degrees of Throw	0.72	1.53							
Shifting Speed	0.78	0.65							
Shifting Force	3.15	1.8							
Cost	0.45	1.5							
Simplicity	0.36	0.72							
Total	5.46	6.2							

Updated Project Plan:

Task				T	Τ	V	1								
	1	2	3	4 5	5 6	5 7	1	8	9	10	11	12	13	14	15
Communicate With Client	/	7	Λ	N	V	V	1								
Defining Project ,Need, Goal, Objective and Constraints	/	Z	Λ	N	V	V	1								
Preparing Quality Function Deployment:	/	7	Λ	N	V	V	1								
State Of the Art Research	/	7	1	N	V	V	1								
Verify The Date of Frame	V	V	1	1	V	V	1								
Creating Function Diagrame:	V	V	1	1	V	V	1								
Conceptualizing Alternative Approach:	V	V	\wedge	T	V	V	1								
Register with SAE	1	И	Λ	Λ	1	1	1								
Decision Matrices	V	И	1	1	T	1	1								
Brainstorming for the transmission	1	И	1	N	1	T	1								
Concept Selection:	1	И	1	N	V		1								
Budget Analysis	1	И	1	N	T	1		4 P.O.							
Engineering Analysis for Improved Baja	1	И	1	N	T	1									
Fabrcating Concept Protopyte:	1	И	1	木	T	V					1				
Testing Concept Protopyte:	V	И	Λ	N	V	V	1								
Order The Engine and Other Necessary Materials	V	V	Λ	N	V	V					2				
Finalizing The Project:	V	И	Λ	N	V	V	1								
Problem Definition and Project Planing	V	И	1	1	V	V	1								
Concept Generation and Selection		И	Λ	T	$\overline{\mathcal{V}}$	17	1 🔺								
Concept Protopyte		V	1	T	V	V	1					٠			
Project Proposal	V	V	1	N	V	V	1					Contraction of the second			

Conclusions:

- Functional Diagram is helpful to the presenter to, to know how the baja is work, and what the main sources of energies used in.
- Criteria and Relative Weights of Criteria: helps us evaluate criteria importance
- Concepts: suspension, clutch, and shifter
- Decision Matrices of Concepts: use the weighted criteria we developed to evaluate our concepts
- Updated project plan: timelines that have changed

References:

• Erickson, Wallace D. Belt Selection and Application for Engineers. New York: M. Dekker, 1987.

• Naunheimer, Harald. Automotive Transmissions Fundamentals, Selection, Design and Application. 2nd ed. Berlin: Springer, 2011.