Magnetostrictive Torque Motor

Problem Definition and Project Planning

Randall Bateman, Aaron Bolyen, Chris Cleland, Alex Lerma, Xavier Petty, and Michael Roper

NORTHERN ARIZONA UNIVERSITY College of Engineering, Forestry

September 25, 2015

Overview

- Introduction
- Need Statement
- Problem Definition
 - Project Goal
 - Objectives
 - Constraints
- Quality Function Deployment
- House of Quality
- Project Plan
- State-of-the-Art Research
- Conclusions

Introduction

- Honeywell Aerospace designs and manufactures numerous products and services for the commercial and military aircraft industry
- Michael McCollum is Chief Engineer of Pneumatic controls technology for Honeywell
- Mitchell Thune is a recent NAU graduate who is working with Michael McCollum on this project
- The clients want to replace an electromagnetic transducer with a magnetostrictive material, Terfenol-D, in the pneumatic control systems used on commercial airliners

Introduction

- Terfenol-D, designed by the U.S. Navy, elongates when placed in a magnetic field and this elongation produces a force
- Terfenol-D is generally manufactured in round bars, as shown below

Source: Etrema.com

Need Statement

Currently, there are no feasible actuators for aircraft valve systems using the magnetostrictive material Terfenol-D.

Project Goal

The goal of this project is to develop a viable actuator that applies the magnetostrictive properties of Terfenol-D.

Objectives

Objective	Measurables	Units
Decrease Hysteresis Effect	Magnetic Field Strength	A/m*
Increase Strain	Percent Elongation	in/in
Measure Output Force	Force	lbf
Reduce Operation Time	Time	milliseconds
Maximize Work Per Unit Weight	Work, Weight	ft ² /s ²

* English units for magnetic field are not well-defined.

Constraints

- At least 25 lb of force exerted
- Need at least 0.03 in stroke (based off of 3 in length rod)
- Must cost less than \$5000 USD
- Must be smaller than 3 x 5 x 12 in
- Coefficients of thermal expansion must be constant throughout device
- System must be cooler than 500 °F
- Greater than 1:10 ratio of input to output distances

Quality Function Deployment

Inction ent Customer Requirements	Engineering Requirements	Weight	Size	Strain	Temperature	Thermal Coefficient	Hysteresis	Force	Cost	Input/Output Ratio	Manufacturability
Inexpensive		٥	٥						٥		\$
Durable		٥			٥	٥			٥		٥
Efficient		٥	٥				٥	٥			
Quick				٥			٥	٥			
Small		٥	٥						٥	٥	٥
Reliable						٥	٥	٥	٥	٥	
Feasible		٥	٥	٥	٥		٥	٥	٥	٥	٥
Simple							٥		٥	٥	٥
High Stroke			٥	٥			٥		٥	٥	
Heat Tolerant					٥	٥			٥		٥

House of Quality

Project Plan

0	Incompleted Milestones
٠	Milestones

Activity	Schedule (In weeks)																
Activity	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16
Preliminary Research									ļ							<u> </u>	
Gather Materials																	
Design System			l														
Draft Designs				Ì												Ì	
Design Selection																	
Create Proof of Concepts Prototype				l		•										Ì	
Re-design							ļ					ł	Ì			ł	
Testing							ł					-				ł	
Material Data Collection												ł				ł	
System Data Collection			l	ļ					ļ							1	
Milestones																	
Client Meetings			•				Ŷ					Ş				Ŷ	
Problem Definition and Project Plan				\$					1				-			İ	
Concept Generation and Selection								(\$				-			ł	
Proof of Concept Presentation													\$				
Project Proposal																\$	

State-of-the-Art Research

- Solenoid Design Presentation Michael McCollum, Lecture of Pneumatic Controls
- Electromagnetic Devices H.C. Rotors, book published in 1941 focusing on magnetic machines
- Various articles gathered from several databases (Engineering Compendex, WorldCat, and Google Scholar)
- Dissertation on Terfenol-D from Ohio State University
- Dr. C. Ciocanel Faculty reference on Smart Materials

Conclusions

- We are designing an actuator for Honeywell that incorporates Terfenol-D, a magnetostrictive material
- Michael McCollum and Mitchell Thune are our contacts at Honeywell
- Need to determine feasibility of using Terfenol-D in aircraft valve systems
- Our goal is to design a feasible actuator that uses the magnetostrictive properties of Terfenol-D
- The main objectives are to minimize actuator size, increase stroke, and reduce effect of hysteresis
- The constraints include a minimum output force and stroke, equivalent thermal expansions, budget, and temperature effects

Conclusions

- The Quality Function Deployment relates the customer needs to engineering requirements that we will use in the design
- The House of Quality demonstrates how each engineering requirement affects another
- The Gantt chart displays the project timeline and progress of each task. This will be updated throughout the duration of the project
- There is research currently being conducted on magnetostrictive materials and applications to actuators

References

[1] H. Roters, *Electromagnetic Devices*. New York: John Wiley & Sons, Inc, 1941.

[2] A. Olabi and A. Grunwald, 'Design and application of magnetostrictive materials', *Materials & Design*, vol. 29, no. 2, pp. 469-483, 2008.

[3] B. Jankowski et al., "Design and analysis of Magnetostrictive Actuator with Terfenol-D Core" in Computation in Electromagnetics (CEM 2011) IET 8th international conference, 2011© IET doi: 10.1049/cp.2011.0081

[4] B. Yan, C. Zhang, L. Li, Z. Tang, F. Lü and K. Yang, 'Modelling self-sensing of a magnetostrictive actuator based on a terfenol-D rod', *Chinese Physics B*, vol. 23, no. 12, p. 127504, 2014.

[5] D. Davino, A. Giustiniani and C. Visone, 'The piezo-magnetic parameters of Terfenol-D: An experimental viewpoint', *Physica B: Condensed Matter*, vol. 407, no. 9, pp. 1427-1432, 2012.

[6] F. Calkins, R. Smith and A. Flatau, 'Energy-based hysteresis model for magnetostrictive transducers', *IEEE Trans. Magn.*, vol. 36, no. 2, pp. 429-439, 2000.

[7] K. Prajapati, R. Greenough, A. Wharton, M. Stewart and M. Gee, 'Effect of cyclic stress on Terfenol-D', *IEEE Trans. Magn.*, vol. 32, no. 5, pp. 4761-4763, 1996.

[8] M. Dapino and S. Chakrabarti, 'Modeling of 3D Magnetostrictive Systems with Application to Galfenol and Terfenol-D Actuators', *Advances in Science and Technology*, vol. 77, pp. 11-28, 2012.