

2016 Collegiate Wind Competition: Tunnel Electrical Team

- Brayden Worrell

 Team Lead
- Zachary Sabol
 Budget Liaison
- Michael Evans
 Software Expert

- Jess Robinson

 Controls Expert
- Korey Holaas
 Power Electronics Expert
- Scott Muente
 Load Expert

Outline

- What is the CWC?
- Project Description
- Electrical Layout
- Competition Requirements
- Power Electronics
- Controls & Software
- Load
- Manufacturing
- Testing Results

What is the CWC?

Collegiate Wind Competition (CWC): Undergraduate student competition sponsored by the U.S. Department of Energy. Consists of 2 challenges:

1. Marketable Turbine

- Identify viable market
- Design turbine for market
- Prepare a business plan to enter market

2. Tunnel Turbine

- Design turbine for wind tunnel testing
 - Compete against 12 other Universities in these tests
 - Have a design link between tunnel and market turbines

Figure 2: Tunnel Turbine

BRAYDEN WORRELL

Project Description

- 1. Design turbine for wind tunnel testing
 - Electrical:
 - Power Electronics
 - Software
 - Controls
 - Load

<u>Sponsors</u>

<u>Advisors</u>

- David Willy
- Karin Wadsack
- Dr. Venkata Yaramasu
- Dr. Tom Acker
- Dr. Marc Chopin
- Ross Taylor
- John Sharber

Layout of Turbine Electrical Components

JESS ROBINSON

Competition Requirements

 Power Curve Performance Test

 Measure power versus wind speed

- 2. Control of Rated Power and Rotor Speed Test
 - Measure power output and RPM versus wind speed
- Safety Test

 Aim for 90% reduction in RPM when brakes are turned on

Figure 4: Component testing in Flagstaff

Figure 5: A previous year's competition tunnel [1]

ZACHARY SABOL

Power Electronics

- Rectifier
 - Converts AC power to DC power
 - Passive model
 - Operates without a control signal
- DC/DC Converter
 - Buck-Boost topology
 - Step-up or Step-down input voltage through control of transistor
 - PSpice simulations to confirm calculations

Figure 6: The Passive Rectifier Model [2]

Controls - Software

Controls - Hardware

Brakes

- AC and DC brakes
- Turbine shutdown
- Manual shutdown switch
- Load disconnect
- Arduino ZERO Microcontroller
 - Activation of brakes
 - Sensing voltage

Figure 10: DC Brake Board

Figure 11: Arduino ZERO Microcontroller

JESS ROBINSON

Load

Load

- The basic load for dissipating power from the generator
- Uses an adjustable power resistor that can dissipate up to 300 watts
- Bonus Challenge Load
 - Relates to deployment design
 - As more power is produced, more lights turn on

Figure 12: Variable Resistor

Figure 13: Bonus Load CAD Model

Manufacturing

- Prototyping
 - Moved from small sections to full circuit
- Manufacturing
 - Tested one part at a time as team mounted and connected components
 - Revisited designs as the team tested their components

Figure 13: AC Brake Prototype

Figure 15: Rectifier Board

Figure 14: AC Brake Manufacturing

Figure 16: DC/DC Converter

Testing Results

- Connected components to turbine output, measured values and recorded for later analysis.
 - Brakes worked effectively up to 12 m/s wind speed
 - Rectifier has a voltage loss of 1.25 V and is ~85% efficient
 - DC/DC Converter bugs led to redesigns
 - Bonus Load operational
 - Software code redesigned to match new changes

Figure 17: A still from a recorded tunnel test

References

[1] – Schroeder, Dennis. (2015, May 1). *Collegiate Wind Competition Photographs* [Online]. Available: energy.gov/eere/collegiatewindcompetition/

[2] – IXYS. Shottky Three Phase Rectifier Bridge [Online]. Available: ixdev.ixys.com

Questions?