Orbital Test Stand Progress Report

Mary Begay, Brett Booen, Calvin Boothe, James Ellis, and Nicholas Garcia

January 21, 2014

Overview

- Introduction
- Problem Definition Revisited
 - Customer Needs, Goals, Objectives, Constraints
- Wheels Design Revisited
 - \circ Components
- Winter Break Progress
 - Implementation
 - Our concerns
- Spring 2015 Schedule
- Conclusion

Introduction

Orbital Test Stand with idea of scale

Test Stand with one 570-pound fairing loaded Credit: Orbital

★ CUSTOMER NEEDS:

- The procedure for rotating launch vehicles on the test stand is inefficient and unsafe.
- Rotating launch vehicles on the test stand places Orbital engineers in a dangerous position.
- The setup time for testing is exhausted by the need to manually rotate the launch vehicles.

★ PROJECT GOALS:

- Easy to operate
- Easy to implement
- Easy to maintain
- Easy to inspect
- Meet customer requirements

★ OBJECTIVES:

Objective	Measurement Basis	Units
Minimize time it takes to load launch vehicle	Time to load launch vehicle with new mechanism in place	
onto test stand	compared to current procedure	minutes
Minimize costs associated with new design	New design cost compared to maintaining current procedure	
concept	and other designs	dollars
Limit new modifications made to test stand	Cost of material for modifications	dollars
Handle the off-center loads of Antares payload		
fairings when loaded on stand	Strength	psi
Minimize space requirements	Square footage required by new mechanism	ft ²

\star CONSTRAINTS:

- Continuous rotation for +/- 360 degrees
- Rotational speed not exceeding 1 RPM
- Counteract off-centered load of 570 lb at 153 in
- Minimal modifications

Wheels Design Revisited

Credit: Mary Begay

Nick Garcia

D-Shape Spindle

Nut

Washer

Retainer

Washer

Cotter / Pin

Motor

- McMaster-Carr
- Part # 6135K79
- 1 Hp
- 1725 RPM
- Steel Housing
- Motor can directly be mounted to equipment
- Heavy duty applications with high starting torque

3%"-16 Mounting Holes

Credit: Mcmaster.com

Nick Garcia

Speed Reducer

- Grainger
- Part # 29TL65
- 100:1 gear ratio
- 1 Stage Reversible
- Nominal Output RPM 18
- Max Torque 1655 in-lb
- Aluminum housing
- Bronze alloy worm gear
- Hardened alloy steel worm pinion gear

Roller Chain

- McMaster-Carr
- Part # 6261K176
- Standard single strand
- Steel
- Working Load 803 lbs
- Connecting link for lengths:
 - 1 20 ft
 - **50 ft**
 - 100 ft

Credit: Mcmaster.com

Sprockets

- Gear Box
 - Part # 6280K479
 - \circ 16 teeth
 - A 4.22 in
 - B 1.25 in
 - C 3.06 in
- Wheel
 - Part # 6236K472
 - \circ 32 teeth
 - A 8.07 in
 - B 1.25 in
 - $\circ~$ C 4.00 in

Credit: Mcmaster.com

Nick Garcia

Pneumatic Tires

- McMaster-Carr
- Part # 2181T31
- 16.1 inch diameter
- J-Tread Type
- 4.7inch wheel width
- 590 lbf load rating
- 60 psi pressure rating
- Treaded tire has more load capacity vs smooth tire

Credit: Mcmaster.com

Spindle Assembly

- Gempler's
- 4 Hole Straight Spindle Stub Axle Assembly
- Option to weld onto flange or directly to mounting plate

Credit: Pacifictrailers.com

Winter Break Progress

Brett Booen

Adapter Plates & Assemblies

Our Concerns

- Steel plate mounting for the motor/gearbox assembly
- The 90-degree turn between motor and gearbox
- The drive shaft that comes out of the gear box
- Spindle mounting alignment
- Logistics for parts
- Potentially ordering parts that do not work
- Having design implemented by April 1, 2015

17

Spring 2015 Schedule

Brett Booen

Conclusion

DONE:

- Completed final Wheel Design concept
- Established Spring 2015 schedule
- Set roles for team members

TO DO:

- Coordinate with Orbital to order parts in the next 4 to 5 days
- Finalize logistics plan by Friday for ordering, transporting, and storing parts
- Discuss \$4,015 budget with Orbital
- Ease remaining concerns by talking with Orbital

Orbital Test Stand

NAU Senior Capstone Design Team

Left to Right: James Ellis Brett Booen Calvin Boothe Mary Begay Nick Garcia