Problem Formulation and Project Plan

10/8/13

Austin Chott, Saleh Alsadiq, Matt Beckham, Thomas Griffin, Chris Heine

Overview

- Introduction
- Need Statement
- Goal
- Objectives
- Timeline
- Quality Function Deployment
- House of Quality
- Conclusion

Introduction

- Client: U.S. Environmental Protection Agency (EPA)
 - P3: People, Prosperity, and the Planet Award
 - Research, design, and develop solutions to real world challenges involving the overall sustainability of human society

Need Statement

Current solar water heaters are too expensive and it takes a long period of use to make them financially sensible, therefore current solar water heater designs are financially impractical over a short period of use.

Project Goal

 Design a low cost solar water heater that is efficient enough to produce a quick financial return

- Heats Water
- Weather Proof:
 - Systems typically outside
 - Withstands the elements to reduce cost
 - Average storms
 - Average exposure to elements
 - Water doesn't freeze in the system

- Low Initial Cost:
 - Current consumer SWH systems in the US \$5000-\$10,000
 - Focused on performance

• Low Initial Cost:

– Cost multipliers that will be considered:

- Quality of materials used
- Quantity of materials used
- Complexity of the design
- Difficulty of construction
 - More skill and tools required

Initial cost

- Quick Financial Return:
 - Break-even Cost is met within reasonable time period (2 Years)
 - Minor sacrifices in performance in order to significantly reduce cost (%/USD)

- Easily Implemented into Current Heating Systems
 - Works with gas and electric water heaters
 - Easily buildable and installable with do-it-yourself level knowledge of plumbing and construction

Low Maintenance Cost:

 Simultaneously and easily maintained with the current water heating system

- Safe operation:
 - Safe in home operations
 - Meets all governments safety requirements
- Suitable system size:

 Reasonable system volume for implementation

Timeline

	GANTT project	\mathbf{i}	7	2013	# Y		ngine Submit Propos				Po
	Name	Begin date	End date	September	October	November	December	January	February	March	April
0	Research	9/2/13	10/15/13		 \						
0	Problem Formulation and Project Plan	9/24/13	10/8/13								
0	Problem Formulation/Project Plan Presentation	10/9/13	10/9/13								
0	Identify Key Technologies and Approaches	10/16/13	11/15/13								
0	Prepare Concept Generation and Selection	10/9/13	10/28/13			 _					
•	Concept Generation and Selection Presentation	10/29/13	10/29/13			•					
0	Engineering Analysis	10/29/13	11/19/13								
۲	Engineering Analysis Presentation	11/20/13	11/20/13			•					
0	Prepare Proposal	11/20/13	12/2/13			<u> </u>	i i i i i i i i i i i i i i i i i i i				
0	Submit Proposal	12/3/13	12/3/13				•				
0	Build Components	12/3/13	2/3/14								
۲	Analyze Performance	12/3/13	2/17/14								
0	Build Prototype	2/18/14	3/7/14								
•	Prototype Analysis	3/10/14	4/17/14								
0	Presentation at P3 Expo	4/18/14	4/18/14								•

Quality Function Deployment

Specifications

	Specifications										
		Weighted Importance	Volume	Material Strength	Temperature	Cost	Efficiency	Weight	Heat Transfer	Pressure	Force
	1. Heats Water	10			9	9	9		9		
	2. Weather Proof	3		9				1			9
Se	3. Low Initial Cost			1	9	9	3				
, ž	4. Low Maintence	9	1	3	1	9	3		3	3	
j	5. Quick Financial Return	10		9	1	9	9		9		
Obejctives	6. Implement Into Current Systems	9	3		1		1		3	9	3
Ō	7. Safe Operation	3	1	3	3						1
	8. Sensible System Size	3	9			3		9			
	9. Easy to Use	1					3				1
-	Sc		66	163	217	360	249	30	234	108	58
	Relative	0.18	0.45	0.60	1.00	0.69	0.08	0.65	0.30	0.16	
	Unit of M	m^3	kPa	°C	\$	%	kg	$W/(m^2K)$	Pa	N	
	Technical			> 38	< 300				<101325		

House of Quality

╋

╋

╋

╋

╋

°C (water produced)

 σ (allowable stresses on collector)

\$ (maximum cost installed)

Years (maintenance interval)

\$ (yearly maintenance cost)

Years (break even time frame)

m² (system size)

Conclusions

- Need: Better SWH
- Goal: Quick Financial Return
- Objectives
- Timeline
- QFD
- House of Quality

References

- M. Raisul Islam, K. Sumathy and S. Ullah Khan, "Solar water heating systems and their market trends," *Renewable and Sustainable Energy Reviews*, vol. 17, pp. 1-25, 1, 2013.
- U.S. Department of Energy (DOE). (2005). *Residential Energy Consumption Survey 2005*. Washington, DC: Energy Information Administration. http://www.eia.doe.gov/emeu/recs/. Accessed October 2013.
- Energy Information Administration (EIA). (2005). Office of Energy Markets and End Use, Forms EIA-457 A-G of the 2005 Residential Energy Consumption Survey. Washington, DC: EIA.
- American Society of Heating and Air-Conditioning Engineers (ASHRAE). (1987). *Methods of Testing TO DETERMINE THE SOLAR PERFORMANCE OF SOLAR DOMESTIC WATER HEATING SYSTEMS*. Atlanta, GA: ASHREA Standard- 95.
- American Society of Heating and Air-Conditioning Engineers (ASHRAE). (1987). *Methods of Testing to Determine the Performance of Solar Collectors*. Atlanta, GA: ASHREA Standard- 93.
- M. Raisul Islam, K. Sumathy, Samee Ullah Kahn. (2012). Solar water heating systems and their market trends. Atlanta, GA: Renewable and Sustainable Energy Reviews. http://www.elsevier.com/locate/rser/. Accessed October 2013.
- Database of State Incentives for Renewables and Efficiency (DSIRE). (2012). Arizona Incentives/Policies for Renewables and Efficiency. Raleigh, NC: North Carolina State University. http://www.dsireusa.org/incentives/index.cfm?re=0&ee=0&spv=0&st=0&srp=1&state=AZ/. Accessed October 2013.
- U.S. Department of Energy (DOE). (2012). *Building Codes and Regulations for Solar Water Heaters*. Washington, DC: U.S. Department of Energy. http://energy.gov/energysaver/articles/building-codes-and-regulations-solar-water-heating-systems/. Accessed October 2013.
- U.S. Department of Energy (DOE). (2012). *Building Energy Codes Program*. Washington, DC: U.S. Department of Energy. http://www.energycodes.gov/adoption/states/. Accessed October 2013.
- Energy Protection Agency (EPA). (2013). *P3:People, Prosperity, and the Planet Student Design Competition for Sustainability*. Washington, DC: EPA. http://www.epa.gov/P3/. Accessed October 2013