Solar Tracking Structure Design

Concept Generation and Selection

Belsheim Joshua, Francis Travis, He Jiayang, Moehling Anthony, Liu Pengyan, Ziemkowski Micah

Oct. 28.2013

Presentation Outline

- Project introduction
- Concept generation
- Concept selection
- Updated project plan
- Conclusion

Project Introduction

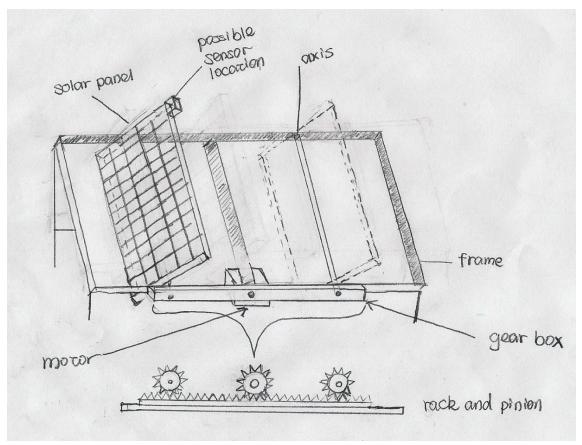
Need

Current solar tracking systems are expensive unreliable and hard to maintain.

Objective

Design a light-weight yet reliable solar tracking technology.

Sponsor


Dr. Tom Acker

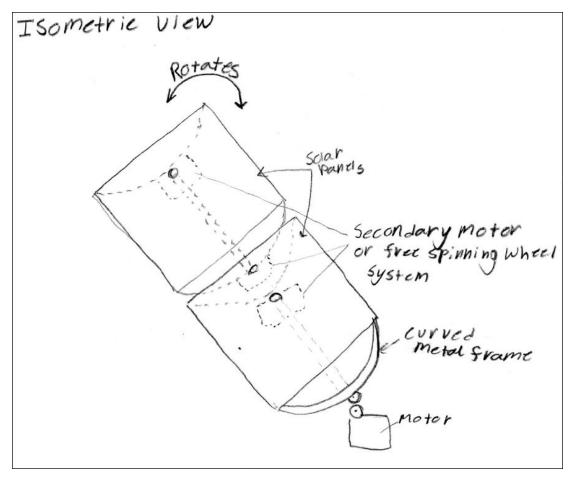
Testing environment

Will be tested with existing fixed solar panels

Solar Panel Array

Rack and pinion system with multiple panels

Advantages:


- •Low cost
- Simplicity
- High reliability

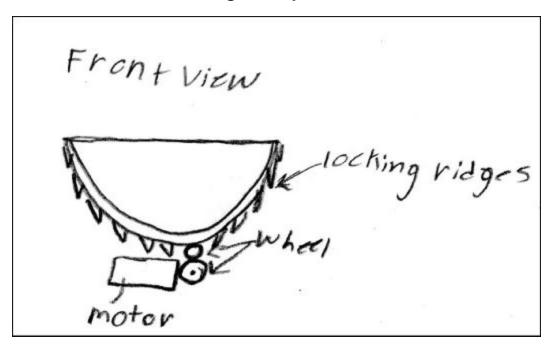
Disadvantages:

- •One degree of freedom
- Large torque needed
- Large working space

Half-Cylinder Design

Isometric view of half cylinder design

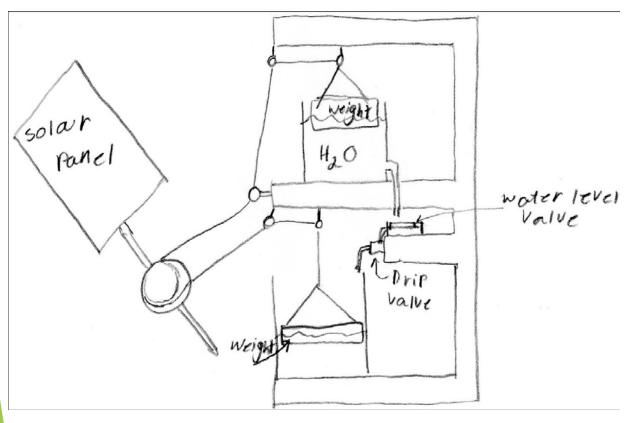
Advantages:


- •Unique look
- •Can have multiple panels

Disadvantages:

- Difficult to manufacture
- Requires a powerful motor
- Costly specialized wheel

Half-Cylinder Design Continued

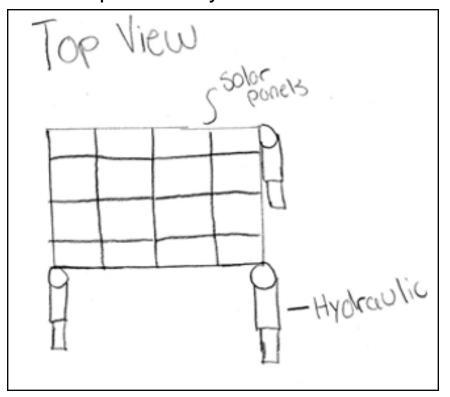

Front view of half gear cylinder

- Allows for multiple panels to track the sun east to west.
- Can be powered by one motor or multiple
- Half circle frame has groves to hold the solar panel in place

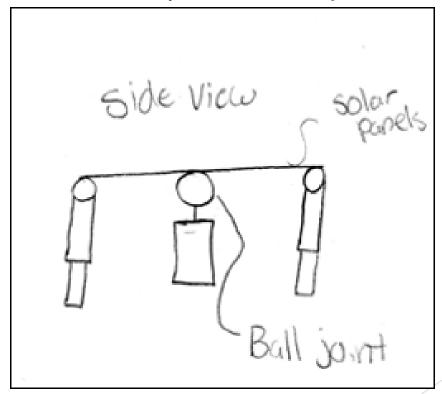
Low Tech Water tracking system

Diagram of water tracking system

Advantages:


- Does not require power
- Can be easily modified to use power
- Innovative

Disadvantages:


- Requires constant maintenance
- •Weather dependent
- Only works for one solar panel

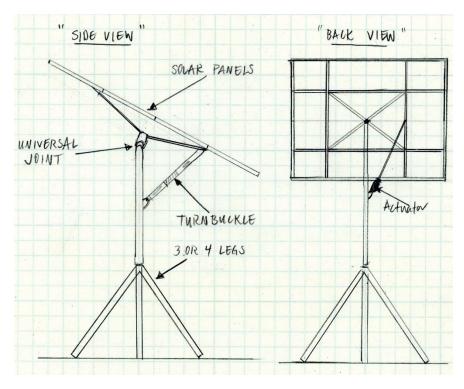
Hydraulic Ball Joint

The top side of system

Side view of system with ball joint

Hydraulic Ball Joint continued

Advantages:


- No gears or motor needed
- Could use either passive or active components

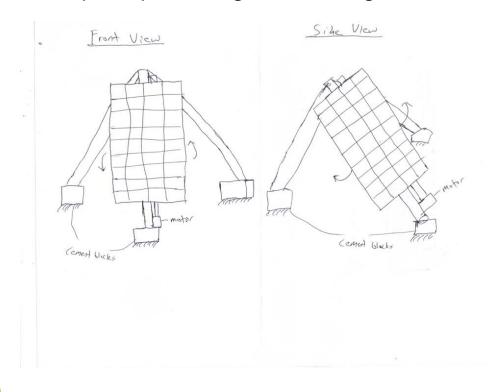
Disadvantages:

- Need a huge ball and joint support.
- The uses of smart materials can be costly
- Is untested

Standing Tripod Design

Simple tripod that is easy to move

- Elevated design
- Tray-like design holding all 4 panels
- Turnbuckle for north-south setting
- Actuator for east-west setting


Advantages vs. Disadvantages

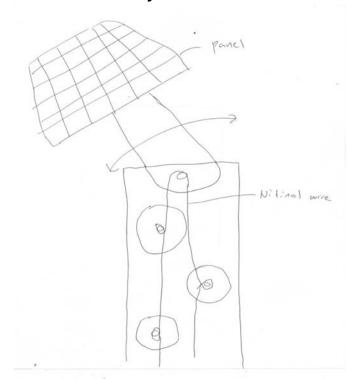
- Advantages
 - Inexpensive
 - North-south and east-west movement
 - Parts readily available
 - Portable

- Disadvantages
 - Needs external power source
 - Unsafe due to elevated design
 - Cannot withstand inclement weather
 - Manual operation for north-south setting

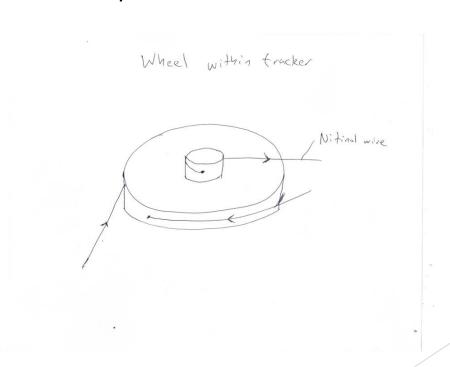
Angled Solar Tracker

Simple tripod design that is angled

Advantages


- Done before
- •Simple design
- Low cost
- Active or passive

Disadvantages


- Not marketable
- Only one solar panel
- •Space may be a problem

Nitinol Solar Tracker

Side view of system with wheels

Close up view of the wheel

Nitinol Tracker Continued

Advantages

- Simple design
- Marketable
- Could be used for multiple panels
- Saves space

Disadvantages

- Design has not been tested
- Large amount of Nitinol required
- Price will be high
- Unknown energy requirements
- Lots of unknowns

Concept selection categories

- Reliability
 - Consistency
 - How often does it break down?
- 2. Survivability
 - Will it operate effectively in Flagstaff?
- 3. Maintenance
 - How hard is it to fix?
- 4. Safety
 - Design present danger to people?

- 5. Efficiency
 - How much energy does it generate?
- 6. Cost
 - Price of the design
- 7. Light weight
 - Easy to move or install

Category Weight

Weight is from 1 to 7, 1 being the least important 7 being the most important

Lightweight=1

- Self-imposed
- Not harmful or beneficial

Survivability=2

- Designed for all weather
- Broken solar panel doesn't collect energy

Maintenance=3

- high maintenance < efficiency, reliability, cost
- Client wants a maintainable system

Safety=4

- Always important
- Unsafe design could short circuit, fall apart during maintenance, etc.

Efficiency=5

- Current designs inefficient
- More efficient then current setup

Cost=6

Current designs are expensive

Reliability=7

- Current systems break down often
- Dr. Acker emphasized this objective
- Consistent energy production

Concept Decision Matrix

Concept selection matrix

	<u>Safety</u>	Cost	Light weight	<u>Efficiency</u>	<u>Maintenance</u>	Reliability	Survivability	
Weighted Importance	4	6	1	5	3	7	2	<u>Total</u>
<u>Designs</u>								
Half Cylinder	0	-1	-1	1	0	0	1	0
angled tracker	1	1	0	1	1	1	1	27
Solar array	1	1	0	1	0	1	1	24
ball joint	1	0	1	1	1	1	1	22
nitinol tracker	1	-1	1	0	1	1	1	11
Water low tech	0	1	-1	0	-1	0	1	4
Standing tripod	0	1	1	1	1	1	0	22

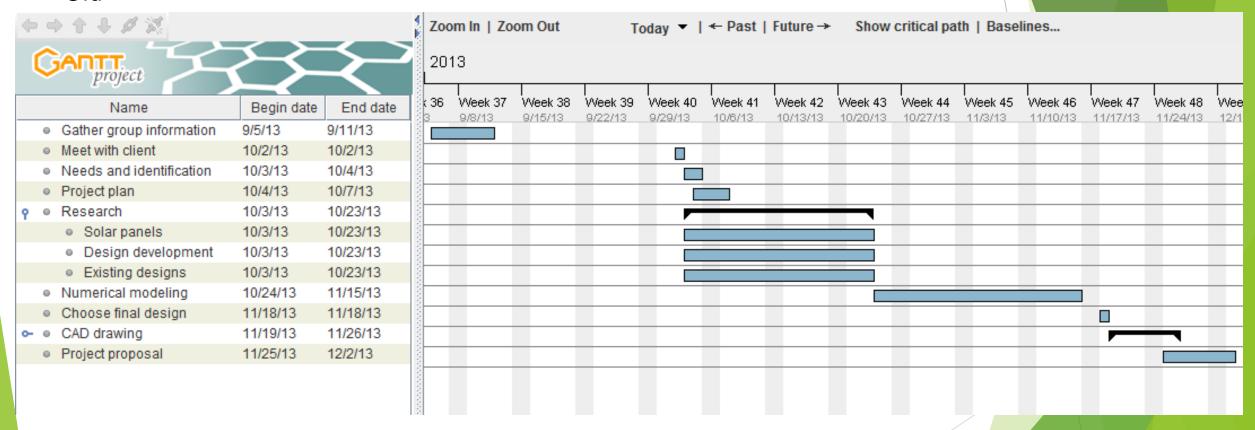
Passive and Active Matrix

Passive

- Pros
 - Does not use electricity
- Cons
 - Less precise
 - Less sturdy

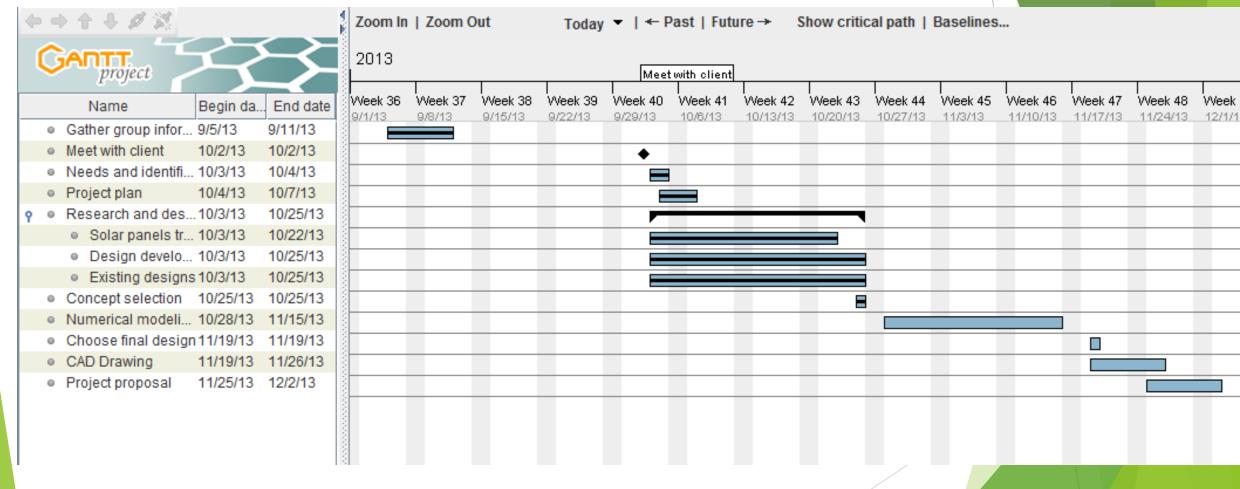
Active

- Pros
 - Accurate
 - More structurally sound
- Cons
 - Uses power produced by the solar panels


Passive vs. Active decision matrix

Passive vs. active matrix

	Cost	Efficency	<u>Reliable</u>	
Weighted Importance	1	3	2	<u>Total</u>
Tracking systems				
Active	-1	1	1	4
Passive	0	0	1	2


Original Gantt Chart

Old

Updated Gantt Chart

New

Conclusion

- Two main tracking methods can be applied for designing solar tracking structure
 - passive methods
 - active methods
 - 7 different design concepts which were introduced
 - The candidate for the design concept were chosen based on the decision matrix

References

- 1. Budynas G., Richard, Nisbett J., Keith, 2011, "Shigley's Mechanical Engineering Design", Ninth Edition, McGraw-Hill, New York, New York
- 2. Leo J., Donald, 2007, "Engineering Analysis of Smart Material Systems", John Wiley & Sons, Inc., Hoboken, New Jersey.
- 3. (2008). "PVWATTS: Arizona Flagstaff." PVWATTS Calculator http://rredc.nrel.gov/solar/calculators/PVWATTS/version1/US/code/pvwattsv1.cgi > (Oct. 26, 2013)

Questions?