ISES Solar Charging Station

Undergraduate Symposium

Ze Chen, Tyler Faulkner, Alexa Kearns, Yaqoub Molany, Thomas Penner

April 25, 2014

Overview

- Introduction
- Problem Formulation
- Engineering Analysis
- Proposed Design
- Testing and Results
- Cost Analysis
- Conclusion

Introduction

- Sponsor is Dr. Thomas Acker
- Design a Solar charging station that can charge small electronic devices
- Two main subsections to the solar charging station
 - Structure
 - Control system

Problem Formulation

Need

• Northern Arizona University currently does not have a place that uses a sustainable, renewable energy source, that students and faculty could use in order to charge small electronic devices.

Goal

• Design a solar charging station capable of providing enough power to charge small electronic devices. As well, a structure to hold the system.

Problem Formulation

Operating environment:

- The system will be located outside the W.A. Franke College of Business, NAU
- Mostly sunny throughout the day
- Able to withstand:
 - Rain
 - Snow
 - Hail
 - High winds

Business Patio

Yaqoub Molany

Problem Formulation

Quality Function Deployment

		Engineering Requirements				
		Energy	Stress	Cost	Yield Strength	Weight
ts	Educational			х		
ner Ten	Withstand Environment	х		х		х
stor ren	Charge Small Devices	х				
cus equi	Safe		х	х	х	x
Re	Inexpensive			х		
Units		kWhr	kPa	\$	kPa	N

Yaqoub Molany

Engineering Analysis

- Solar Irradiance in Flagstaff
- Energy produced a day
- Structure

Irradiance

Average Irradiance:

• in summer $\approx 950 \text{ W/m}^2$

• in winter $\approx 520 \text{ W/m}^2$

Energy

For each panel:

- 2.1 kWh in summer a day
- 1.1 kWh in winter a day

Structure

- Rectangular Steel Tubing
- ASTM A500, grade B
- Sizing: 10" x 5" x $\frac{3}{8}$ "
- Easy to weld the entire structure together
- Roof angled at 35°

Structure for housing components

Proposed Design

Grid tied system

Credited to Endecon Engineering

Design Components

- Six ASE-300-DGF/50 Solar panels
 - Peak panel efficiency: 12.4%
 - Max Power output: 300W
 - Max Voltage output: 50V
- MidNite Solar PV Combiner Box
 - Holds 600VDC fuse for overcurrent protection
 - Contains bus bar for negative grounding of PV array

Credited to SMA

Final Concept Components

- Square D, DC Disconnect Switch 600V, 30 amp
 - Safety shutoff positioned before the inverter
- SMA Sunny Boy 2000W High Frequency Grid-Tie Inverter
 - Converts DC power into AC power at 60Hz
 - CEC Efficiency: 97%
 - Input voltage range from 175V to 600V
 - Built-in DC disconnect

Final Concept Components

- Square D, AC Disconnect Switch 600V, 30amp
 - Safety shutoff positioned after the inverter
- Sunny Beam Monitoring System
 - Communicates with inverter via Bluetooth
 - Displays key data including:
 - Current production profile
 - Total energy yield for the day/month/year
 - CO₂ emission savings

3	THE P.	
E.		
	þ	
ð).	~	

Credited to SMA

Final Concept Components

- Bidirectional Focus Digital Utility Meter
 - Measures energy input to the grid in kWh
 - Measures energy drawn from the grid to charge
 - Required by the National Electrical Code

- Houses Utility Meter
- Dual Conducting 600V Direct Burial #12 AWG Copper Wire

Design Schematic

- Panel testing
- Panel testing results
- Expected amount of devices charged in a day

Panel Testing Schematic

Thomas Penner

Demonstration of the actual testing system

- Average data curves from all tested panels
- Panel efficiency: 9.45% (calculated)

- Panel Power Output: 236W
- Inverter efficiency: 97%
- Table of Energy Output:

	Energy Output		
Number of Panels	Summer	Winter	Average
1 Panel	1.37 kWh	0.92 kWh	1.15 kWh
4 Panels	5.49 kWh	3.66 kWh	4.58 kWh
5 Panels	6.87 kWh	4.58 kWh	5.73 kWh
6 Panels	8.24 kWh	5.49 kWh	6.87 kWh

- Assuming each cellphone requires 10 W-h
- Assuming each laptop requires 100 W-h

Bill of Materials

Item	Unit Price	Quantity	Total Cost	Application
Sunny-Boy inverter	1597.00	1	1597.00	High frequency inverter, 240 VAC, 2000 Watts, 10 year warranty
Sunny-Beam Display	236.93	1	236.93	Wireless System monitor with Bluetooth. Will display consumption information for educational purposes.
DC Disconnect	170.00	1	170.00	This pulls the solar panels off line in case of emergency
Digital utility meter	156.00	1	156.00	Bidirectional meter for utility reasons
Square D meter socket	121.04	1	121.04	The main plug for the system, box for meter
Combiner box	73.75	1	73.75	MidNite solar PV combiner box, protects the system from overcurrent
AC disconnect	58.67	1	58.67	Square D disconnect switch. 240v ac, NEMA 3R, 2pole, 30 amp
Fuse holder	4.65	1	4.65	Required by Arizona code, protects the system from having a power surge
Charging sockets	3.25	6	19.50	Where students can charge their electronic devices.
Fuse (600V DC)	3.05	1	3.05	Required by Arizona code, protects the system from having a power surge
12AWG double conducting wire	0.90	80	72	Connecting electrical components of the system
Total			2512.60	

Cost Analysis

- Manufacturing costs
 - Control system materials
 - Construction costs
- Man power
 - 50 hours per worker
 - \$15 an hour
 - 10 workers
- Minimum predicted total cost: \$10,000

Conclusion

- Creating a grid connected solar charging station for small electronic devices
- 11 component system included the Sonny-boy inverter
- Up to 8.24 kWh and average of 6.87 kWh produced by 6 panels in a day
- Can charge an average of 30-35 cell phones and laptops per day
- Minimum total cost: \$10,000

Acknowledgments

- Northern Arizona University professors
 - Dr. Tom Acker (ME)
 - David Willy (ME)
 - Dr. Srinivas Kosaraju (ME)
 - John Sharber (EE)
- Dan Hansselman (Northern Arizona Wind and Sun)

References

[1]Solar Component, Northern Arizona Wind and Sun, [online] 2014, <u>http://www.solar-electric.com/</u> (Accessed: 15 April 2014).

[2] Duffie, John A., Beckamn, William, A., Solar Engineering of Thermal Processes, 3rd Edition, JohnWiley & Sons, Inc. ISBN-13 978-0-471-69867-8, Hoboten, New Jersey, 2006.

[3] Making Energy engaging, Green Energy Options, [online] 2012, <u>http://www.greenenergyoptions.co.uk/</u> (Accessed: 25 October 2013).

[4] Standby Power Summary Table, Standby Power, [online] 2014, <u>http://standby.lbl.gov/summary-table.html</u> (Accessed: 15 April 2014).

[5] Dimensions and Section Properties, Hollow Structural Sections, [online], <u>http://www.cim.mcgill.ca/~paul/HollowStruct.pdf</u> (Accessed: 16 April 2014).

[6] Circuit Breaker Sizing, Thomson Technology, [online] 2009, http://www.nolensales.com/files/circuit_breaker_sizing.pdf (Accessed: 17 November 2013)

[7] Measurement and Control, Omega, [online] 2013, http://www.omega.com/subsection/current-voltage-meters.html (Accessed: 26 October 2013).

References

[8] A Guide to Photovoltaic (PV) System Design and Installation, Endecon Engineering, [online] 2001, <u>http://www.energy.ca.gov/reports/2001-09-04_500-01-020.PDF</u> (Accessed: 25 October 2013).

[9] Duffie, John A., Beckamn, William, A., <u>Solar Engineering of Thermal Processes</u>, 3rd Edition, JohnWiley & Sons, Inc. ISBN-13 978-0-471-69867-8, Hoboten, New Jersey, 2006.

[10] M. Rahim, J. Yoshino and T. Yasuda, "Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy," *International Journal of Energy* & *Environment,* vol. 3, pp. 687-700, 09, 2012.

[11] A. Ahmad and R. Loganathan, "Real-Time Implementation of Solar Inverter with Novel MPPT Control Algorithm for Residential Applications," *Energy & Power Engineering,* vol. 5, pp. 427-435, 08, 2013.

[12] Berdner, J., Mync, P., "PV System Ground Faults", Solar Pro: 2.5, August/September 2009

[13] Sizing for DC Disconnect for Solar PV Systems, Civic Solar, [online] 2013, <u>www.civicsolar.com/resource/sizing-acdc-disconnect-solar-pv-systems</u> (Accessed : 25 October 2013).

[14] Estimating Solar System Yields, LETITGO, [Online] 2011, <u>http://www.letitgo.com.au/solar-engineering/19--estimating-solar-system-yields.html</u> [Accessed 15 November 2013].

Questions?