ISES Solar Charging Station

Ze Chen, Tyler Faulkner, Alexa Kearns, Yaqoub Molany, Thomas Penner

March 6, 2014

Final System Design

2000W Sunny boy inverter

Sunny-Beam display system

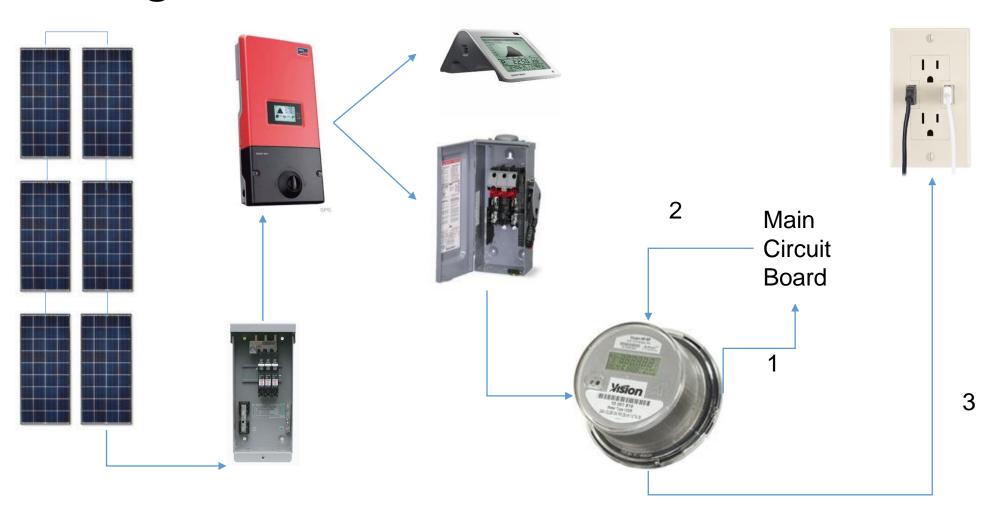
Square D disconnect switch. 240v ac
NEMA 3R, 2pole, 30 amp

Final System Design

MidNite Solar PV combiner box

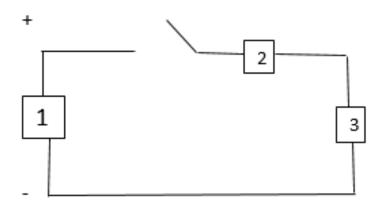
Square d meter socket

• #12 AWG Single conducting wire



Design Schematic

Final Cost


Item	Cost Per Unit	Quantity	Total Cost	Application
Sunny-Boy inverter	1597	1	1597	High frequency inverter, 240 VAC, 2000 Watts, 10 year warranty
Sunny-Beam	236.93	1	236.93	Wireless System monitor with Bluetooth. Will display consumption information for educational purposes.
sqd-du221rb- 30a	58.67	1	58.67	Square D disconnect switch. 240v ac, NEMA 3R, 2pole, 30 amp
Copper wire	0.9	50	45	Copper wire to wire the whole system
Fuse	3.05	1	3.05	Required by Arizona code, protects the system from having a power surge
Fuse holder	4.65	1	4.65	Required by Arizona code, protects the system from having a power surge

Final Cost

Combiner box	73.75	1	73.75	MidNite solar Pv combiner box, protects the system from overcurrent
Digital utility meter	156	1	156	Bidirectional meter for utility reasons
Square d meter socket	121.04	1	121.04	The main plug for the system
Charging sockets	3.25	6	19.5	Where students can charge their electronic devices.
12 gage single conducting wire	0.5	25	12.5	Connecting electrical components of the system
Labor	7.5	80	600	At \$7.50 an hour for about 80 hours of total labor
Total			2928.09	

Testing materials

- Solar Panels
- Connectors for the solar panels
- A kicker switch to allow variable loads
- A shunt resistor
- Two 10 ohm variable resistors
- At least 16 gage copper wire
- A digital multimeter
- A computer and DAQ (Possible)

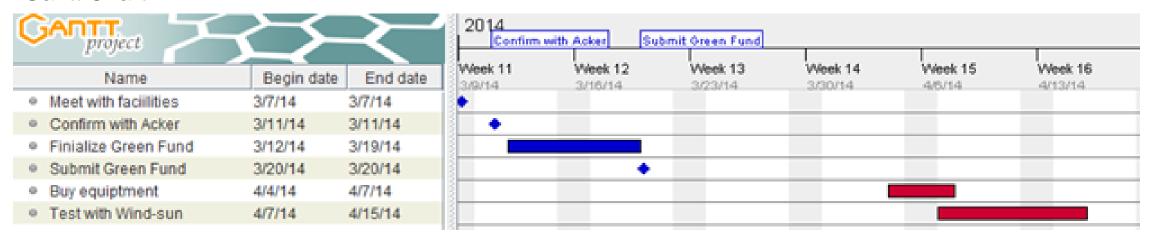
- 1: Solar panel that is being tested.
- 2: Shunt resistor that is place after the switch
- Variable resistance.

Panel Testing

Procedure:

- Connect the positive end of solar panels to kicker switch
- Connect the kicker switch to shunt and variable resistors
- Connect variable resistors to negative end of solar panels
- Use a digital multimeter to record voltage across variable resistor

Green Fund Application


Met with Dr. Acker to review first draft of application

- Made suggested corrections and additions to application
- Contacted Agnes Drogi at facilities to discuss building possibilities

Alexa Kearns 8

Updated Project Plan

Gantt Chart

Alexa Kearns 9

Next Steps

Meeting set up with Agnes Drogi at facilities

Complete solar panel testing

Submit Green Fund application

Alexa Kearns 10

References

[1] http://www.solar-electric.com/