Portable Sanitization Chamber

Engineering Analysis

Robertson Beauchamp, Jacob Blackburn, Lauren Kieffer, Elliot Nation, Angel Soto, Dangxian Zha

November 20, 2013

Overview

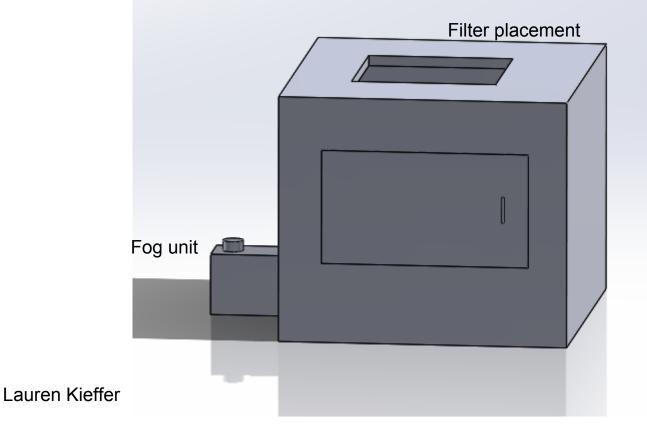
- Introduction
- Designs and Analyzations
 - UV Light
 - Chemical Spray
 - Lasers
- Conclusion

Introduction

- W.L. Gore & Associates
- Develop a portable sanitization process that decreases the bioburden levels on select materials to a certain threshold.
- Five Concepts
- Possibly combine processes

Design Specifications

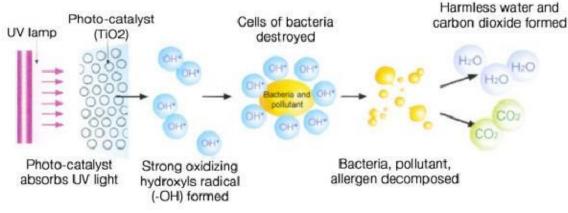
Design Specifications	Quantity or Pass/Fail	
Process effectively elimiantes bacterial spores (e.g. Bacillus Atropheaus)	1 Log reduction	
Physical components of chamber do not cause harm to user	Pass/Fail	
Chemical	H ₂ O ₂ : 1.4 mg/m ³	
concentration	No eye exposure to light	
Electrically grounded Non-pinching hinge	pass/fail	
Duration of process	20 minutes	
Control System	pass/fail	


Design Specifications	Quantity or Pass/Fail	
weight*	70 lbs	
width	1 meter	
Temperature	120°C	
Stresses applied	2 Gpa	
Does not saturate material	pass/fail	
substance covers every aspect of material	pass/fail	
Cost to generate	\$3,000	

Angel Soto

Chemical Fogging

- 7% hydrogen peroxide (H_2O_2) solution
- Cold vapor safe for materials sensitive to heat and water
- Filters must be used to break down H_2O_2


Chemical Fogging Design

5

Filters

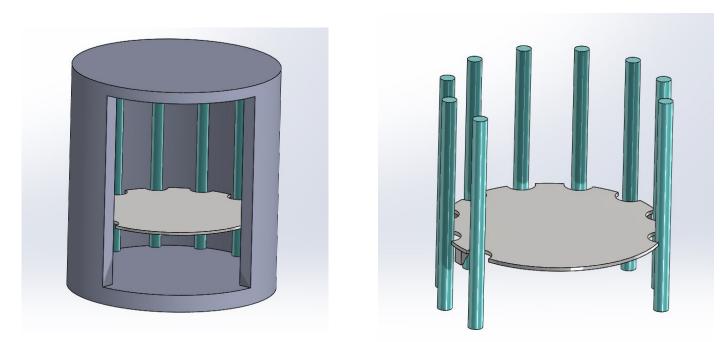
- HEPA filters- useless for chemical breakdown.
- Activated Carbon filters- break down some chemicals, need to be replaced often.
- TiO₂ -photocatalytic oxidation using UV light, breaks down chemicals and bacteria.

Lauren Kieffer

Photo courtesy of: www.peakpureaire.com

Material Selection

- Must be compatible with H_2O_2 at various concentrations.
- Aluminum, PVC and PTFE No negative reactions
- Aluminum used for enclosure, door, handles, hinges, etc.
- PVC and PTFE used in fogging components, tubing and nozzle.


Ultraviolet Germicidal Irradiation

		Lamp	UV-C			
	Life	Wattage	Radiation	Length	Diameter	
Bulb Model	(hr)	(W)	(W)	(cm)	(cm)	Weight (g)
TUV PL-L 95W	9000	95	27	53.5	3.8/1.8	134
TUV 18W ISL	9000	18	4.5	60.4	2.8	100
TUV 10W SLV	9000	10	2.5	34.5	2.8	62
G25T8 (GE-T8)	7500	25	7	45.7	2.8	N/A

Ultraviolet Germicidal Irradiation

Bulb Model	Intensity (mW/cm ²)	Time For 2log (sec)	Time For 3-4log (sec)
TUV PL-L 95W	9.28	1.25	500.93
TUV 18W ISL	1.56	7.45	2984.78
TUV 10W SLV	1.51	7.66	3068.78
G25T8 (GE-T8)	2.86	4.06	1626.01

Ultraviolet 3D Model

Jacob Blackburn

UV-C Laser

- Still in development
 - only able to produce 1 mW continuous beam
- Use a bare aluminum Mirror to direct laser beam
 - no less than 90% reflectivity
- 1 mW beam needs only 0.095 secs to sterilize the area under beam
 - sounds fast, but if beam size is .05 cm diameter...

UV-C laser (1mW and 100mW)

1 mW laser (time to scan 8.5" x 11" area)

A(cm ²)	mW	I (mW/cm ²)	D	t(s)	t(m)	t(h)	90%	Reflectivity
0.001963	1	509.30	50	30240	504	8.40	560	
			100	60480	1008	16.80	1120	
			4000	2419200	40320	672.00	44800	

100 mW laser

A(cm ²)	mW	I (mW/cm ²)	D	t(s)	t(m)	t(h)	90%	Reflectivity
0.001963	100	50929.58	50	302.4	5.04	0.08	5.6	
			100	604.8	10.08	0.17	11.2	
			4000	24192	403.2	6.72	448	

Robertson Beauchamp

Combined UV/H $_2O_2$ Process

- Eliminates need for filter
- Creates free hydroxyl radicals, OH+, that are strong oxidizing agents.
- Radicals degrade additional toxins.
- Study shown this process inactivates *Bacillus atrophaeus* spores.

Material Selections

- Aluminum used for enclosure.
- PVC and PTFE used in fogging device.
- Borosilicate glass used in between enclosure and UV lights.
- High UV transmittance, protects bulbs from fog and dust.

Mass Calculation for Combined UV/H2O2 Process

Interior Height	hi(m)	0.80	hi(ft)	2.62
Exterior Height	ho(m)	1.00	ho(ft)	3.28
Inside Plastic	di(m)	0.500	di(ft)	1.640
	t(m)	0.005	t(ft)	0.016
	do(m)	0.505	do(ft)	1.657
	Vs(m ³)	0.160	Vs(ft ³)	5.659
	Vm(m ³)	0.003	Vm(ft³)	0.111
	ρ(kg/m³)	2230	ρ(lb/ft³)	139.21
	Mass(kg)	7.04	Mass(lb)	15.52
Spacing	s(m)	0.05	s(ft)	0.1640
Outside Aluminum	di(m)	0.555	di(ft)	1.821
	t(m)	0.010	t(ft)	0.033
	do(m)	0.565	do(ft)	1.854
	Vs(m ³)	0.251	Vs(ft ³)	8.854
	Vm(m ³)	0.0088	Vm(ft ³)	0.31
	ρ(kg/m³)	2700	ρ(lb/ft³)	168.56
	Mass(kg)	23.75	Mass(lb)	52.36

Total Mass of the Chamber

Materials	Mass(kg)	Mass(lb)	#	Subtotal	Subtotal
				Mass(kg)	mass(lb)
Chamber	30.79	67.88	1	30.79	67.88
UV lights	0.1	0.22	8	0.80	1.76
Wires	0.1	0.22	1	0.10	0.22
Fog Machine	1.0	2.20	1	1.00	2.20
				Total Mass(kg)	Total Mass(lb)
				32.69	72.07

Project Plan

.4 🖃	Engineering Analysis	10/30/13 11/19/13
4.1	Solid Works	10/30/13 11/18/13
4.2	😑 😐 System Analysis	10/30/13 11/19/13
4	Chemical	10/30/13 11/19/13
4	 UVGI 	10/30/13 11/19/13
4	 Laser 	10/30/13 11/19/13
4	 Structural 	10/30/13 11/19/13
0	Portable Sanitization Cha	1/8/14 3/10/14
0	Test Prototype	3/11/14 4/8/14
0	Final Prototype	4/14/14 5/1/14

Conclusion

- UV Light and Chemical processes compliment each other
- The two concepts work better together than separately for what we need

References

[1]Peak Pure Air, "How TiO2 UV Photocatalytic Oxidation (PCO) Works", 2001, <u>https://www.peakpureair.com/how-tio2-uv-photocatalytic-oxidation-pco-works</u>, accessed on Nov. 14, 2013.

[2]Melanie Kito, Hi Nguyen, and John Tran, "Hydrogen Peroxide and UV Treatment", 1998, <u>http://www.calpoly.</u> edu/~ceenve/enve/jsczechowski/enve436/projects/Hydro-Perox/H2O2-UV-Treatment.html, accessed on Nov. 12, 2013.

[3]Braz. J. Chem. Eng. vol.30 no.3 São Paulo July/Sept. 2013, "Inactivation of Bacillus atrophaeus spores in healthcare waste by UV light coupled with H₂O₂", 2012

[4]Cole Parmer, "Material Compatibility with Hydrogen Peroxide (H₂O₂)", Ozone Services, <u>http://www.ozoneservices</u>. <u>com/articles/004.htm</u>, accessed on Nov. 14, 2013.

[5]Schott North America, Inc., "SCHOTT Tubing Product Selector", 2013, <u>http://www.us.schott.</u> <u>com/tubing/english/product_selector/index.html?glassid=8347</u>, accessed on Nov. 16, 2013

[6] Owens, M., Deal, D., Shoemaker, M., Knudson, G., Meszaros, J., and Deal, J., 2005, "High-Dose Ultraviolet C Light Inactivates Spores of Bacillus Atrophaeus and Bacillus Anthracis Sterne on Nonreflective Surfaces," Applied Biosafety, **10**(4), pp. 240-247.

[7] Boardman, E., Huang, L., Robson-Hemmings, J., Smeeton, T., Hooper, S., Heffernan, J., 2012, "Deep ultraviolet (UVC) laser for sterilisation and fluorescence applications," Sharp Laboratories of Europe, Ltd.