Portable Sanitization Chamber

Project Proposal

Robertson Beauchamp, Jacob Blackburn, Lauren Kieffer, Elliot Nation, Angel Soto, Dangxian Zha

December 11, 2013

Overview

- Client
- Objectives & Constraints
- Project Plan
- Concepts
- Engineering Analysis
- Final Design

Client

- W.L. Gore & Associates, Inc.
- International Company
- Medical, fabrics, and other products
- Local office in Flagstaff, AZ
- Looking to prepare incoming engineers by sponsoring real-world application projects.

Need Statement

- The client currently has access to sterilization systems that use either harsh chemicals, or a large amount of heat that can damage various materials.
- The client needs a current sanitization device that is portable and safe for various materials such as plastics and papers.

Goal

 Develop a portable sanitization process that disinfects bioburden amounts past acceptable levels and is safe for various materials.

Objectives

- Sanitizes within regulation bioburden levels
- Chemical exposure and residue within regulated concentration
- Materials sanitized retain functionality
- Sanitization system characterizes portability
- Cost to produce is comparatively inexpensive
- Quick sanitization cycle time

Design Specifications

Design Specifications	Quantity or Pass/Fail
Process effectively elimiantes bacterial spores (e.g. Bacillus Atropheaus)	1 log unit reduction
Physical components do not cause user harm	pass/Fail
Chemical concentration	H ₂ O ₂ : 1.4 mg/m ³ No eye exposure to light
Electrically grounded Non-pinching hinge	pass/fail
Duration of process	20 minutes
Control System	pass/fail

Design Specifications	Quantity or Pass/Fail
Weight	35 kg
Footprint Area	1 m^2
Temperature	120°C
Stresses applied	2 Gpa
Does not saturate material	pass/fail
Substance covers every aspect of material	pass/fail
Cost to generate design prototype	\$3,000

Operating Environment

- Sanitize test strips contaminated with *Bacillus atrophaeus* used to evaluate bioburden level reduction
- Hydrogen peroxide test strips placed within chamber proximity to monitor exposure levels

							Benchmarks							
L	2	D	Importance out of 5	% Importance	Size	Weight	Cost to produce	OSHA standards	Low operating temp.	Cycle time	Power source	Bioburden reduction	Autoclaves	Vacuum Hydro peroxide vapor proc
	s	Easily transported by one person	3.5	17%	9	3	1	1				3	x	
	ert	Low cost	3	14%	1	1	9	3	3	3	1	3	x	
	e e	Safe	5	24%	3	3	3	9			1	3	x	
	uir uir	Sanitizes a variety materials	5	24%	3		3		9	1	3	9		x
	ũ g	Short cycle time	3	14%	3		1	1	1	9	3	3	x	x
		Cycle ends automatically	1.5	7%			3	1		9	9		x	x
			Import	ance	3.5	1.4	3.2	3.0	2.7	2.6	2.2	4.2		
			% Impo	rtance	15%	6%	14%	13%	12%	11%	10%	19%		
				units	m²	kg	\$	varies	°C	min	w	%		
					<1	<35	2500	Yes	<70	<30	<1000	>50		
							Eng	gineerin	ng Tar	gets				

Jacob Blackburn

House of Quality

Jacob Blackburn

Autoclave

- Hot water sanitization
- Above 135 °C for at least 3 minutes
- Too hot for certain materials
- Water would deteriorate certain materials

Electron Beam

- Sanitizes through items
- Expensive
- Large scale

Laser Sanitization

- Works with many materials
- Long cycle time
- Expensive

Infrared Radiation

- Advantages:
 - Low cycle time
 - Compact
 - Minimum maintenance
 - Ease of use

- Disadvantages:
 - Cost to produce
 - Power required
 - Material incompatibility

Chemical Processes

- Chemicals can kill 99% of bacteria
- Dry fog chemical sanitization
- Hydrogen Peroxide (H_2O_2) is a safe chemical
- Entire rooms can be cleaned in 15-30 minutes

Chemical Fogging

Courtesy of http://www.gotfog.com

Lauren Kieffer

Hydrogen Peroxide Fogging

Lauren Kieffer

Chemical Fogging

- 7% hydrogen peroxide solution
- Cold vapor is safe for materials sensitive to heat and water
- Filters must be used to break down H_2O_2

Material Selection

- Must be compatible with H_2O_2 at various concentrations.
- Aluminum, PVC and PTFE No negative reactions
- Aluminum used for enclosure, door, handles, hinges, etc.
- PVC and PTFE used in fogging components, tubing and nozzle.

Ultraviolet Light

- Maximum kill potential 2-15 minutes
- Cost efficient
- Only sanitizes outer surface
- Bulbs must be regularly cleaned

Ultraviolet Germicidal Irradiation

		Lamp	UV-C			
	Life	Wattage	Radiation	Length	Diameter	
Bulb Model	(hr)	(W)	(W)	(cm)	(cm)	Weight (g)
TUV PL-L 95W	9000	95	27	53.5	3.8/1.8	134
TUV 18W ISL	9000	18	4.5	60.4	2.8	100
TUV 10W SLV	9000	10	2.5	34.5	2.8	62
G25T8 (GE-T8)	7500	25	7	45.7	2.8	N/A

Ultraviolet Germicidal Irradiation

	Intensity	Time For 2log	Time For 3-4log
Buip Model	(m W/cm ⁻)	(sec)	(sec)
TUV PL-L 95W	9.28	1.25	500.93
TUV 18W 1SL	1.56	7.45	2984.78
TUV 10W SLV	1.51	7.66	3068.78
G25T8 (GE-T8)	2.86	4.06	1626.01

Ultraviolet Model

Angel Soto

Weighting Characteristics

	Safety	Material	Maintience	Cycle Time	Cost	Power Required	Total + 1	
Safety		1	1	1	1	1	6	29%
Material	0		1	1	1	1	5	24%
Maintience	0	0		0	1	1	3	14%
Cycle Time	0	0	1		1	1	4	19%
Cost	0	0	0	0		1	2	10%
Power Required	0	0	0	0	0		1	5%

Decision Matrix

	Safety	Material Compatibility	Maintenance	Cycle Time	Cost	Power Required	Total
Autoclave	0	-1	1	1	1	-1	0.14
Chemical Process	0	1	0	1	1	1	0.57
Lasers	1	1	1	0	-1	1	0.62
Infrared Radiation	0	-1	1	1	0	-1	0.05
UV Light	1	1	0	0	1	1	0.67
Weights	29%	24%	14%	19%	10%	5%	

Combined UV/H₂O₂ Process

- Eliminates need for filter
- Creates free hydroxyl radicals, OH-, that are strong oxidizing agents.
- Radicals degrade additional toxins.
- Study shown this process inactivates Bacillus atrophaeus spores.

UV/H₂O₂ Process

The UV-Oxidation Process

- UV converts hydrogen peroxide into highly reactive hydroxyl radicals.
- The hydroxyl radicals attack and decompose contaminants.
- 3. At the same time, UV light disinfects

Courtesy of: www.trojanuv.com

Material Selection

- Aluminum used for enclosure.
- PVC and PTFE used in fogging device.
- Borosilicate glass used in between enclosure and UV lights.
- High UV transmittance, protects bulbs from fog and dust.

Final Design

 Drawing highlights key dimensions

 Portability is achieved

Final Design Model

3D Representation

Component View

Mass Calculation

Parts	QTY	Unit Mass(kg)	Total Mass(kg)
Chamber	1	17.64	17.64
Rack	1	7.85	7.85
UV Lights	4	0.13	0.54
Lampholder	4	0.05	0.18
Ballast	4	0.45	1.82
Fog Machine	1	0.14	0.14
Misc. /Hardware	1	2.27	2.27
		Total mass(kg)	30.43

Cost

Type of Cost	Cost (\$)
Bill of Material	1153.92
Manufacturing	190
Subtotal	1343.92
Man Power	22895
Total	24238.92

Project Plan

- 1	0	30		7	\leq	20	13						Conce	ot Salastio	1				
Out	Name		Name	Begin	End date	37	Weak 38	Wask 39	Week 40	Weak 41	Week 42	Week 43	Week 44	Week 45	Week-45	Weak-47	Week-48 11/24/13	Week-40	We 12.6
1 1		Pr	eliminary Design	9/11/13	12/6/13	-			-		-						-	_	
1.1	. 9		Research	9/11/13	10/25/13	_	-	-	-	-	_	-	-						
1.1.1			· Sanitizaion Metho.	9/11/13	10/25/13	-	_	_	_	_	_	_	8		12.83		11		
1.1.2			Existing Designs	9/11/13	10/25/13	-	-	-	_	-			12						
1.1.3			Programming	10/10/13	10/25/13			11	10		_								
1.1.4			· Electical Systems	10/10/13	10/25/13						_	_	18	10	5.00				
1.1.5			 Medical Environm. 	10/10/13	10/25/13	_					_	-			1.11				
1.2	Ŷ		Needs & Specification	\$9/25/13	10/8/13								12		19 11				
1.2.1			Client Needs	9/25/13	10/8/13	-		-						10					111
1.2.2			 Objectives 	9/25/13	10/8/13			_	_										11.
1.2.3			 Constraints 	9/25/13	10/8/13			-							11 12 1				
1.3	.9	0	Concept Generation	10/28/13	10/29/13			12					-	12	12.52		1		<u>.</u>
1.3.1			Brainstorm	10/28/13	10/29/13	_													111
1.3.2			 Concept Selection 	10/29/13	10/29/13								•		10 100				
1.4	.9		Engineering Analysis	10/30/13	11/19/13	_													<u>.</u>
1.4.1			 Solid Works 	10/30/13	11/18/13					iii				_					
1.4.2		9	 System Analysis 	10/30/13	3 11/19/13	-	_						_		10.00			_	
1.4			 Chemical 	10/30/13	11/19/13	-							-	_					111
1.4			 UV0I 	10/30/13	11/19/13	3							_			_	1		
1.4			Laser	10/30/13	11/19/13	<u> </u>								_					
1.4			 Structural 	10/30/13	11/19/13	_							-	_					
1.5		٠	Cost Analysis	12/2/13	12/6/13	1			18	10								E-	

Project Plan

	GATT 5	7	$\sum_{i=1}^{2}$	014																
Out.	Name	Begin .	End date 2	Week 3 1/12/14	Week 4	Week5	Week 6	Week7 20/14	Week 8 2/16/14	Week9	Week 10 30/14	Week 11 30/14	Week 12 1/16/14	Week 13 000/14	Week 14 000/14	Week 15 48/14	Week 15 410.04	Week 17 42014	Week 18 407/14	Wed 545
1	✤ ● Preliminary Design	9/11/13	12/6/13																	
2	Build Prototype	1/8/14	310/14															11.		
3	Test Prototype	3/11/14	4/8/14																	
4	Final Prototype	4/14/14	5/1/14	11	0		11				1			1		1				

Conclusion

 The combined UV/H₂O₂ process achieves design specifications by reducing bioburden levels past a certain threshold.

References

Carlson, C., The Use of UV Lights for Disinfection. Arizona State University, From: https://cfo.asu.edu/node/2667

Cole-Parmer. Material Compatibility With Hydrogen Peroxide. From: http://www.ozoneservices.com/articles/004.htm

Ellis R.J, Moss C.E, W.E. Murray and W.H. Parr, Infrared Radiation, 2013.

Heraeus Noblelight LLC, Infrared Heat for Disinfection in the Food Industry, 2013.

Iannotti, M. T. and Pisani Jr. R., Inactivation of Bacillus atrophaeus spores in healthcare waste by uv light coupled with H2O2. *Braz. J. Chem. Eng.* [online]. 2013, vol.30, n.3 [cited 2013-12-10], pp. 507-519.

Occupational Safety and Health Administration, General Industry 29 CFR 1910: Hazardous and Toxic Substances, U. S. Department of Labor, Subpart Z. from url:https://www.osha.gov/SLTC/hazardoustoxicsubstances/index.html

PathCon Laboratories, The Microbial Bioburden of USP 797 Compliance, 2009

References

Rao, Shridhar PN, Sterilization and Disinfection, 2009.

Rutala, W., Weber, D., Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008, Department of Health and Human Services, 2008

Sakthivel, S. and Kisch, H. (2003), Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew. Chem. Int. Ed., 42: 4908–4911. doi: 10.1002/anie.200351577

Ultraviolet Disinfection: Crucial Link in the Sterilization Chain. Terra Universal Inc. From: http://www.terrauniversal.com/images/tools/catalog/uvc_germicidal_irradiation_082510135200. pdf

W.L. Gore, Portable Sanitization Chamber for Medical Manufacturing Use, 2013.

Questions?